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ABSTARCT 1 

The market penetration of Plug-in Electric Vehicles (PEVs) is escalating due to their energy saving and 2 

environmental benefits. In order to address PEVs impact on the electric networks, the aggregators need to 3 

accurately predict the PEV Travel Behavior (PEV-TB) since the addition of a great number of PEVs to the current 4 

distribution network poses serious challenges to the power system. Forecasting PEV-TB is critical because of the 5 

high degree of uncertainties in drivers’ behavior. Existing studies mostly simplified the PEV-TB by mapping travel 6 

behavior from conventional vehicles. This could cause bias in power estimation considering the differences in 7 

PEV-TB because of charging pattern which consequently could bungle economic analysis of aggregators. In this 8 

study, to forecast PEV-TB an artificial intelligence-based method -feedforward and recurrent Artificial Neural 9 

Networks (ANN) with Levenberg Marquardt (LM) training method based on Rough structure - is developed. The 10 

method is based on historical data including arrival time, departure time and trip length. In this study, the correlation 11 

among arrival time, departure time and trip length is also considered. The forecasted PEV-TB is then compared 12 

with Monte Carlo Simulation (MCS) which is the main benchmarking method in this field. The results comparison 13 

depicted the robustness of the proposed methodology. The proposed method reduces the aggregators’ financial loss 14 

approximately by 16 $/PEV per year compared to the conventional methods. The findings underline the importance 15 

of applying more accurate methods to forecast PEV-TB to gain the most benefit of vehicle electrification in the 16 

years to come.  17 

 18 

Keywords: Plug-in electric vehicle; Travel behavior; Artificial neural network; Rough neuron; Smart charging. 19 
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Nomenclature 1 

A. Indices 2 

𝑖 Index of input data  
𝑔 Index of output layer sample  
𝑗 Index of hidden layer sample 
𝑘 Index of iteration number 
𝑙 Index of plug-in electric vehicle 
 𝑝 Index of node 
 𝑞 Index of node 
𝑆 Index of layer number 
 𝑡 Index of time 
 𝑢 Index of equipment 

B. Parameters   3 

𝐵ሺ𝑝, 𝑞ሻ Susceptance of transmission line between bus p and bus q 
𝐶௜௡௙ Charging infrastructure cost  
𝐶௘௙௙ Efficiency factor of the l-th PEV 

𝐶𝑎𝑝௕௔௧,௟
  The capacity of l-th PEV’s battery 

𝐺ሺ𝑝, 𝑞ሻ Conductance of transmission line between bus p and bus q 
𝑀 Total number of input data in Levenberg–Marquardt method 
𝑛଴ Total number of input data components 
𝑛  Total number of nodes 
𝑁் Total number of training neurons in Levenberg–Marquardt method 
𝑁௪ Total number of weights in Levenberg–Marquardt method 
𝑁௪ಽ

 Total number of lower bound weights in Levenberg–Marquardt method 
𝑁௪ೆ

 Total number of upper bound weights in Levenberg–Marquardt method 
𝑛௣௘௩ Total number of PEVs 
𝑛௘௤ Number of all equipment 
𝑛𝑑 Total number of sample data 

𝑃௠௔௫
௨  Maximum active power of equipment u 

𝑄௠௔௫
௨  Maximum reactive power of equipment u 

𝑆𝑂𝐶ௗ௘௣ PEV’s minimum SOC at departure time 
𝑉୫ୟ୶     Maximum voltage of nodes 
𝑉௠௜௡ Minimum voltage of nodes 
𝜌௖௛௥ Charging efficiency parameter 
𝜂௪ Training coefficient for weights 
𝜂஼ Training coefficient for context weights in recurrent network 
𝜂ట Training coefficient for flexible activation function parameter 

C. Variables 4 

𝐶𝑎ሺ𝑡ሻ Cost of active power at time t 
𝐶𝑟ሺ𝑡ሻ Cost of reactive power at time t 
𝑑ሺ𝑘ሻ Desired output in iteration k 
𝑒௝

௦ሺ𝑘ሻ Error value for neuron j in layer S in iteration k 
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𝑒௝ெሺ𝑘ሻ Error of neuron j for input data M in Levenberg–Marquardt method in iteration k 
𝑒௝ெಽ

ሺ𝑘ሻ Error of lower bound neuron j for input data M in Levenberg–Marquardt method in iteration k 
𝑒௝ெೠ

ሺ𝑘ሻ Error of upper bound neuron j for input data M in Levenberg–Marquardt method in iteration k 
𝑒௅ିெ(k) Error vector in Levenberg-Marquardt method in iteration k 

𝐸 Total Sum square error 
𝐸ሺ𝑘ሻ  Total Sum square error in iteration k 
𝑓௝

௦ሺ𝑘ሻ Activation function for neuron j in layer S in iteration k 
𝐻ሺ𝑘ሻ Hessian matrix in iteration k 
𝐼ሺ𝑘ሻ Identity matrix in iteration k 
𝐽ሺ𝑘ሻ Jacobian matrix in iteration k 

𝐿𝑎ሺ𝑡ሻ Active load at time t 
𝐿𝑟ሺ𝑡ሻ Reactive load at time t 

𝑛𝑒𝑡 
 ሺ𝑘ሻ Activation function input in iteration k 

𝑛𝑒𝑡௝
௦ሺ𝑘ሻ Activation function input for neuron j in layer S in iteration k 

𝑛𝑒𝑡௅௝
௦ ሺ𝑘ሻ Lower bound of activation function input for neuron j in layer S in iteration k 

𝑛𝑒𝑡௎௝
௦ ሺ𝑘ሻ Upper bound of activation function input for neuron j in layer S in iteration k 

𝑂 
௦ሺ𝑘ሻ Output of layer S in iteration k 

𝑂௝
௦ሺ𝑘ሻ Output of neuron j in layer S in iteration k 

𝑂௎
௦ ሺ𝑘ሻ Output of upper bound neuron for layer S in iteration k 

𝑂௅
௦ሺ𝑘ሻ Output of lower bound neuron for layer S in iteration k 

𝑂௎௝
௦ ሺ𝑘ሻ Output of upper bound neuron j for layer S in iteration k 

𝑂௅௝
௦ ሺ𝑘ሻ Output of lower bound neuron j for layer S in iteration k 

𝑃௨ሺ𝑡ሻ Active power of equipment u at time t 
𝑃௟

௖௛௥ሺ𝑡ሻ Charging rate for PEV l at time t 
𝑃𝐸𝑉𝑎ሺ𝑡ሻ PEV’s active power at time t 
𝑃𝐸𝑉𝑟ሺ𝑡ሻ PEV’s reactive power at time t 

𝑃𝑙𝑜𝑠𝑠𝑎ሺ𝑡ሻ Active power loss at time t 
𝑃𝑙𝑜𝑠𝑠𝑟ሺ𝑡ሻ Reactive power loss at time t 

𝑄௨ሺ𝑡ሻ Rective power of equipment u at time t 
𝑅𝑎ሺ𝑡ሻ Purchesed active power at time t 
𝑅𝑟ሺ𝑡ሻ Purchesed reactive power at time t 

𝑆𝑂𝐶௜௡௜௧,௟ሺ𝑡ሻ SOC at initial time t for l-th PEV   
𝑆𝑂𝐶ௗ௘௣,௟ሺ𝑡ሻ SOC at departure time t for l-th PEV   

𝑆𝑂𝐶௟ሺ𝑡ሻ SOC at time t for l-th PEV   
𝑇𝑙௟ Trip length by l-th PEV 

𝑊𝑎ሺ𝑡ሻ Wind active power at time t 
𝑊𝑟ሺ𝑡ሻ Wind reactive power at time t 
𝑤௝

௦ሺ𝑘ሻ Weight vector for neuron j in layer S in iteration k 
𝑤 

 ሺ𝑘ሻ Weight vector for neuron j in layer S in iteration k 
𝑊௎௖

ௌ ሺ𝑘ሻ Weight vector of upper bound context neurons in recurrent network in iteration k 
𝑊௅௖

ௌ ሺ𝑘ሻ Weight vector of lower bound context neurons in recurrent network in iteration k 
𝑊௎ሺ𝑘ሻ Weight vector of upper bound neurons in iteration k 
𝑊௅(k) Weight vector of lower bound neurons in iteration k 
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𝑊௎ೕ
ௌ ሺ𝑘ሻ Weight of upper bound neuron j in layer S in iteration k 

𝑊௅ೕ
ௌ ሺ𝑘ሻ Weight of upper bound neuron j in layer S in iteration k 

𝑊௜௝
ௌሺ𝑘ሻ Weight vector between sample i of input layer and neuron j in hidden layer S in iteration k 

𝑉ሺ𝑝, 𝑞, 𝑡ሻ Line voltage between bus p and q at time t 
𝑉௣ሺ𝑡ሻ Voltage value for bus p at time t 

𝑋 Input data vector 
𝑋஼  Input data vector for recurrent network 
𝑋௜ Input data vector for sample i 
𝑌௚ Output vector for sample g 
𝑌௚෡  Desired vector for sample g 
𝜆௝

௦ Coefficient of upper bound neuron j for layer S 
𝛾௝

௦ Coefficient of lower bound neuron j for layer S 
𝜇ሺ𝑘ሻ Levenberg-Marquardt decision variable in iteration k  
𝜃௣,௧ Voltage’s angel of node p at time t 
𝜃௤,௧ Voltage’s angel of node q at time t 

𝜓ሺ𝑘ሻ Flexible activation function parameters in iteration k 

D. Abbreviations 1 
ANN Artificial Neural Network 
CEBP Conventional Error Back Propagation  
LM Levenberg Marquardt 

MAE Mean Absolute Error  
MAPE Mean Absolute Percentage Error 
MLP Multi-Layer Perceptron 

NHTS National Household Travel Survey 
NLP Non-Linear Programming 
OC Operation Cost 
PEV Plug-in Electric Vehicle 

PEV-TB Plug-in Electric Vehicle Travel Behavior 
R-ANN Rough Artificial Neural Network 
R-CEBP Rough based Conventional Error Back Propagat 

R-LM Rough based Levenberg Marquardt 
RR-LM Recurrent Rough network with Levenberg Marquardt training method 

RR-CEBP Recurrent Rough network with Conventional Error Back Propagat training method 
RR-ANN Recurrent Rough Artificial Neural Network  

RMSE Root Mean Square Error 

1. INTRODUCTION 2 

1.1. Background and motivation 3 

Transportation sector is the main source of the greenhouse gases (27%) and CO2 (32%) (Fan et al., 2018) and many 4 

other criteria air pollutants in the U.S (US EPA, 2019). Worries over the pollution from fossil fuels in the 5 

transportation sector and concerns about cleaner production strategies have instigated the tendency to use Plug-in 6 

Electric Vehicles (PEVs) instead of the conventional internal combustion engines (Li et al., 2019; Tayarani et al., 7 

2018b, 2018a).  It is estimated that at least 10 percent of the US fleet will be replaced by electric vehicles by 2020 8 

and their market share could reach 50 percent by 2050 (Mukherjee and Gupta, 2017). The addition of a great 9 

number of PEVs to the current distribution network poses serious challenges to the planning, controlling, and 10 
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operating of existing power systems(Aliasghari et al., 2018). In order to deal with the challenges posed by PEVs to 1 

power systems, several studies have been devoted to scrutinizing the optimal smart charging of PEVs. The PEVs 2 

charging demand should be forecasted and calculated for designing of smart charging strategies. More accurate 3 

forecasting methods would be also appreciated by the smart charging planners who are known as aggregators in 4 

this field. However, only a few available studies have exploiting precise PEV-Travel Behavior (PEV-TB) 5 

forecasting methods to determine the smart and efficient charging algorithms. Machine learning and artificial 6 

intelligence data-driven methods can forecast PEVs-TB using the previous data. Despite the benefits of the machine 7 

learning based approaches, they have been rarely applied in forecasting PEV-TB. This paper fills the gap in existing 8 

literature by introducing a new approach in forecasting charging demand of the PEV. In this paper an innovative 9 

approach is proposed to more precisely forecast the PEV-TB to generate more realistic travel pattern used in 10 

aggregator planning. Furthermore, this study includes the aggregator financial loss based on the error of forecasting 11 

the PEV-TB. 12 

1.2. Literature review 13 

With the recent increase in penetration of PEVs in the transportation fleet, it is indispensable to forecast the PEVs 14 

load demand on the electricity networks. In order to reach high accuracy in forecasting PEV’s load, the 15 

characteristics of driver’s behavior such as trip length, arrival time and departure time ought to be estimated 16 

precisely. Existing approaches to model PEV-TB can be classified into four categories. First, the Monte Carlo 17 

simulation (MCS) as the benchmarking method (Arias and Bae, 2016; Biswas et al., 2017; Mohseni-Bonab and 18 

Rabiee, 2017; Morshed et al., 2018; Neaimeh et al., 2015; Qian et al., 2011; Yu et al., 2015) is usually employed 19 

to generate numerous scenarios. Most existing studies (Sun et al., 2018; Wang and Infield, 2018; Yang et al., 2018) 20 

applied normal distribution function for estimating all the parameters which untimely reduces the accuracy of PEV-21 

TB forecasting. Moreover, the problem’s dimensions will expand significantly if the PEVs number is increased. 22 

Therefore, the numerous scenarios of MCS increase the computation time and make the algorithm unprofitable for 23 

the complex operation and planning procedures. The limited number of scenarios could also reduce the accuracy 24 

of the results (Ahmadian et al., 2018). Furthermore, the MCS method does not consider the correlation between 25 

the PEVs-TB parameters such as arrival time, departure time and trip length in the production of different PEV-26 

TB scenarios. Thus, it is possible for the simulated travel data to be inconsistent. For instance, the travel time may 27 

not match with the arrival and departure times. 28 

The models in the second approach use Markov chain theory to forecast PEVs load demand. For instance, Sun et 29 

al.,(Sun et al., 2018, 2016) has provided  a conventional Markov based method to model PEV-TB. Estimating the 30 

transition matrix as the probability of transition between different statuses (Tang et al., 2015) is another technique 31 

to forecast PEVs load demand. For example,  Zhou et al. (Zhou et al., 2017) applied grey-Markov chain to model 32 

PEV-TB considering the transition matrix among different states of PEVs charging procedure. The proposed 33 

method by Sun et al. (Sun et al., 2018) generates numerous scenarios via the MCS to determine the Markov 34 

transition matrix, that neglects the correlation between different travel parameters. Furthermore, to analyze the 35 

PEV-TB, the Markov method needs to group the status of PEVs’ traveling into different steps. The computational 36 

limitation, therefore, arises since the number of steps should be increased to achieve an adequate level of accuracy 37 

in the results. 38 
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The third approach is based on the queuing theory. The method assumes a stochastic travel behavior and applies a 1 

homogeneous Poisson process to determine the arrival and departure rates of PEVs (Bae and Kwasinski, 2012; 2 

Bremermann et al., 2014; Kongjeen and Bhumkittipich, 2016; Li and Zhang, 2012; Vlachogiannis, 2009). For 3 

instance, Zhou et al. (Zhili Zhou and Tachun Lin, 2012) have integrate M/M/s queuing system with traffic flaw 4 

theory to estimate PEVs demand in the highway charging stations. The stochastic assumption, however, could 5 

decrease the accuracy of the results due to its inability to consider different factors for PEVs demand modeling. 6 

Furthermore, the queuing method cannot be effective in modeling the PEV-TB since it does not properly 7 

contemplate the State of Charge (SOC) condition of the PEV’s battery. In one of the most recent studies, Hafez 8 

and Bhattacharya (Hafez and Bhattacharya, 2018), have resolved the previous shortcomings by using a non-9 

homogeneous Poisson process and considering a more precise SOC in the PEV-TB modeling. This method, 10 

however, still does not consider the correlation between different travel parameters, which decreases the accuracy 11 

of the PEV-TB modeling. 12 

The fourth approach is rooted in the trip chain and origin-destination (O-D) concepts from traffic studies. For 13 

instance, Wang et al., (Wang et al., 2014) have introduced a trip chain modeling in which the origin and destination, 14 

arrival and departure times, and trip length of the PEV trips are simulated. The existing studies calibrated the 15 

probability of transition between two consecutive time intervals based on the National Household Travel Survey 16 

(NTHS) data. Jianfeng et al. (Jianfeng et al., 2016) have proposed a MCS model for trip chain forecasting using 17 

probability distribution of NTHS data for three charging scenarios in weekend and weekdays. Mu et al. (Mu et al., 18 

2014) have introduced a novel strategy for PEVs load forecasting at the nodes by O-D analysis. This trip chain 19 

method, however, is more suitable for conventional private vehicles which may have different travel pattern than 20 

PEVs and public transit fleet.  21 

Artificial Neural Network (ANN) and machine learning methods are promising tools that can address the mentioned 22 

concerns in the PEVs load forecasting by deploying big data techniques. The ANN method identifies the parameters 23 

that influence the target (Zhou et al., 2019). In one of the few available studies, Panahi et al. (Panahi et al., 2015) 24 

have applied the conventional ANN method to forecast PEV-TB including arrival time and trip length. The 25 

findings, however, are not generalizable as the network sample is simplified and the data input is limited. Although 26 

the mentioned method utilized different probabilistic distribution function to train ANN, it decreases the accuracy 27 

of forecasting results since it uses the generated data with MCS to train the ANN. The conventional ANN does not 28 

forecast the objective with acceptable precision due to the high stochastic and non-linear behavior of PEV-TB. The 29 

rough ANN (R-ANN), therefore, is introduced to forecast different objective with high uncertainties such as wind 30 

speed (Shi et al., 2018), signature recognition (Elhoseny et al., 2018), load demand (Zhang et al., 2017), medical 31 

imaging (Hassanien et al., 2009; Ślęzak, 2006) and achieved acceptable results. This method boosts the efficiently 32 

of problems with uncertainties by considering the upper and lower bounds of the input variables since instead of 33 

point data it uses the interval data. For instance, Khodayar et al. (Khodayar et al., 2017)  have discussed the feature 34 

of R-ANN in wind forecasting problems. The other applications of R-ANN in solving complex problems have been 35 

explained elsewhere (Ahmadi and Teshnehlab, 2017, Janjai et al., 2018). In this way, the R-ANN methods show 36 

their good ability to forecast the behavior of different phenomena with high uncertainty. This ability makes them 37 
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perfect choice in forecasting PEVs demand since the method considers the correlation between parameters to 1 

forecast trip length.  2 

1.3. Paper contribution 3 

The existing studies have applied stochastic and probabilistic methods such as Monte Carlo, queuing and Markov-4 

chain to model and forecast PEV-TB. While these studies simplify the modeling by analyzing the effective 5 

parameters of PEV-TB independently, they ignore the correlation between different affecting parameters such as 6 

arrival time, departure time and trip length. Moreover, due to the fact that these methods are designed based on 7 

generating different scenarios, they have a lot of computational limitations which is more tangible with increasing 8 

the size of PEVs fleet. This paper aims to introduce a new approach to forecast the load demand posed to the power 9 

system by PEVs. The novel R-ANN method, despite other existing methods, preserves the correlation between 10 

arrival and departure time as well as trip length. The model first interdependently forecasts the arrival time and 11 

departure time of PEVs using historical data and then forecasts the trip length in correlation with arrival and 12 

departure times. Thus, the trip length, which is one of the most important parameters in modeling PEVs load 13 

demand, is estimated according to the arrival and departure time and the correlation between these variables is 14 

well-thought-out. To the best of our knowledge, this is the first study that applies artificial neural network based 15 

on rough structure to forecast PEV-TBs. The main contribution of our study is twofold: introducing a novel 16 

technique to forecast the PEV-TB based on R-ANN that considers the correlation of different parameters in PEV-17 

TB modeling; and implementing the results of the proposed method in optimal charging algorithm and comparing 18 

with the conventional methods. We also compare our proposed method with MCS, the most common and 19 

benchmarking method used to forecast PEV-TB. Finally, we compare the aggregator cost under different 20 

simulation results.  21 

The main contributions and innovations are summarized as follows: 22 

 A novel technique is introduced to forecast the PEV-TB with high precision. 23 

 The ANN with Rough neurons is implemented to deal with the uncertainty of input data. 24 

 The recurrent structure is employed according to the dynamic behavior of understudy system. 25 

 The correlation of the different travel behavior parameters is considered in forecasting PEV-TB. 26 

 The aggregator’s financial loss is calculated based on the accuracy of the forecasting PEV-TB. 27 
 28 

1.4. Paper structure 29 

The rest of the paper is organized as follows: first, optimal charging process and a brief description of ANN 30 

formulation based on conventional and rough structures are introduced. The numerical study section provides an 31 

explanation on the case study including PEV dataset and smart grid topology. Next, the simulation results are 32 

presented for various scenarios. Finally, the general conclusion about the simulation results and the recommended 33 

scheme are discussed. 34 

 35 
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2. METHODOLOGY 1 

In this study, to estimate PEVs load demand on distribution network we propose an ANN based approach. The 2 

modeling framework contains two main parts: the first part presents an optimal charging algorithm and the second 3 

part presents the PEV-TB forecasting using the ANN method.  4 

2.1. The proposed optimal charging procedure modeling 5 

PEVs impose new challenges to power distribution networks including increasing line capacity congestion and 6 

power losses. In order to solve these problems, the optimal charging process should be applied. In this case, the 7 

optimal charging process is done by an intermediary entity called aggregator. The aggregator determines the PEV 8 

optimal charging pattern with forecasting the PEV-TB and electricity market prices. The main goal of the 9 

aggregator is to minimize the PEV total charging cost. In this section, the formulation for PEVs optimal charging 10 

problem is presented. The objective function in the optimization of PEVs smart charging is to minimize the 11 

Operation Cost (OC) subject to the network constraint: 12 

𝑂𝐶 ൌ ∑ ሼ𝑐𝑎ሺ𝑡ሻ ൈ 𝑅𝑎ሺ𝑡ሻ ൅ 𝐶𝑟ሺ𝑡ሻ ൈ 𝑅𝑟ሺ𝑡ሻሽଶସ
௧ୀଵ ൅ 𝐶௜௡௙  (1) 

Accordingly, load and generation equivalence has shown in equations (2) and (3) (Deilami et al., 2011): 13 

∑ 𝑅𝑎ሺ𝑡ሻଶସ
௧ ൅ ∑ 𝑊𝑎ሺ𝑡ሻଶସ

௧ ൌ ∑ 𝐿𝑎ሺ𝑡ሻଶସ
௧ ൅ ∑ 𝑃𝐸𝑉𝑎ሺ𝑡ሻଶସ

௧ ൅ ∑ 𝑃𝑙𝑜𝑠𝑠𝑎ሺ𝑡ሻଶସ
௧   (2) 

∑ 𝑅𝑟ሺ𝑡ሻଶସ
௧ ൅ ∑ 𝑊𝑟ሺ𝑡ሻଶସ

௧ ൌ ∑ 𝐿𝑟ሺ𝑡ሻଶସ
௧ ൅ ∑ 𝑃𝐸𝑉𝑟ሺ𝑡ሻଶସ

௧ ൅ ∑ 𝑃𝑙𝑜𝑠𝑠𝑟ሺ𝑡ሻଶସ
௧   (3) 

The system active and reactive power loss are then extracted by equations (4) and (5) (Hafez and Bhattacharya, 14 

2018):    15 

𝑃𝑙𝑜𝑠𝑠𝑎ሺ𝑡ሻ ൌ ∑ 𝑉ሺ𝑝, 𝑞, 𝑡ሻ ൈ ∑ 𝑉ሺ𝑝, 𝑞, 𝑡ሻ ൈ ሼ𝐺ሺ𝑝, 𝑞ሻ ൈ cos൫𝜃௣,௧ െ 𝜃௤,௧൯௡
௤ୀଵ ൅ 𝐵ሺ𝑝, 𝑞ሻ ൈ sin൫𝜃௣,௧ െ 𝜃௤,௧൯ሽ௡

௣ୀଵ   (4) 

𝑃𝑙𝑜𝑠𝑠𝑟ሺ𝑡ሻ ൌ ∑ 𝑉ሺ𝑝, 𝑞, 𝑡ሻ ൈ ∑ 𝑉ሺ𝑝, 𝑞, 𝑡ሻ ൈ ሼ𝐺ሺ𝑝, 𝑞ሻ ൈ cos൫𝜃௣,௧ െ 𝜃௤,௧൯௡
௤ୀଵ െ 𝐵ሺ𝑝, 𝑞ሻ ൈ sin൫𝜃௣,௧ െ 𝜃௤,௧൯ሽ௡

௣ୀଵ   (5) 

Here, power and constraint of all equipment such as the voltage of nodes and frequency of system should not exceed 16 

the boundary values. Equipment’s constraints are presented in equations (6) and (7):  17 

𝑃௨ሺ𝑡ሻ ൑  𝑃௠௔௫
௨ , 𝑄௨ሺ𝑡ሻ ൑ 𝑄௠௔௫

௨   𝑢 ൌ 1,2, … , 𝑛௘௤     (6) 

𝑉௠௜௡ ൑ 𝑉௣ሺ𝑡ሻ ൑ 𝑉୫ୟ୶    , 𝑝 ൌ 1,2, … , 𝑛, 𝑡 ൌ 1,2, … ,24   (7) 

Although several models are proposed for nonlinear SOC calculation by electrochemistry researchers, most of them 18 

are empirical-based models that are not proper for optimal operation of electric grids. Therefore, in this work, 19 

similar to the most of literature, a simplified linear equation is utilized for SOC calculation. Based on the PEV-TB 20 

data that forecasted by proposed ANN model, the initial State of Charge (SOC) of PEVs extracted by equation (8) 21 

(Ahmadian et al., 2018; Sedghi et al., 2016; Sun et al., 2018). 22 

𝑆𝑂𝐶௜௡௜௧,௟
 ൌ 100 െ

𝑇𝑙௟

𝐶௘௙௙ ൈ 𝐶𝑎𝑝௕௔௧,௟
ൈ 100 (8) 
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where, 𝐶௘௙௙  and 𝐶𝑎𝑝௕௔௧,௣
  are obtained from (“Alternative Fuels Data Center,” 2018 ) which provide annual  1 

selective information data about PEVs’ characteristics.. 2 

One of the main constraints in PEVs charging modeling is to fulfil the minimum limitation of batteries’ SOC at the 3 

departure time. This constraint is shown in equation (9): 4 

𝑆𝑂𝐶ௗ௘௣,௟
 ሺ𝑡 ሻ ൒ 𝑆𝑂𝐶ௗ௘௣, 𝑙 ൌ 1,2,3, … , 𝑛௉ா௏ (9) 

 Equation (10) declares that the SOC of PEVs at departure time have to be 100 percent of the whole battery capacity 5 

(Ahmadian et al., 2018; Xing et al., 2016). 6 

𝑆𝑂𝐶௟ሺ𝑡ሻ ൌ 𝑆𝑂𝐶௟ሺ𝑡 െ 1ሻ ൅ 𝑃௟
௖௛௥ሺ𝑡ሻ ൈ 𝜌௖௛௥ (10) 

The all electrical distribution network constraints are employed in the optimal charging procedure (Golshannavaz, 7 

2018) which is defined as Non-Linear Programming (NLP)problem. 8 

2.2. The proposed ANN theory 9 

Forecasting PEV-TB requires handling huge datasets. We, therefore, need to adapt forecasting tools according to 10 

the huge size of datasets and using the data engineering tools such as ANN and machine learning methods. In ANN 11 

training, first we must identify the parameters that influence the target. These parameters are given as inputs for 12 

ANN training. One of the benefits of ANN is that after completing the training process, the network achievement 13 

is tested with a new data set and, given the accuracy of the results, the network performance can be verified. The 14 

structure of the ANN is designed according to the complexity of the under the study phenomenon. Indeed, the ANN 15 

acts like a Black Box, and once the network is completely trained and tested, it receives input data in the new 16 

situation to forecasts the target variable. Given that many parameters in PEV-TB problem that are correlated, the 17 

forecasting problem is highly complex. For instance, the drivers’ travel behavior is irregular and arrival and 18 

departure times affect the trip length. In this regard, R-ANN can be appropriately applied to forecast PEV-TB.  19 

In this section, a proposed R-ANN based model for forecasting PEV-TB is introduced. In this way, it has been 20 

assumed that intelligent communication infrastructure has been created between PEV owners and aggregators, who 21 

are in charge of controlling the charging pattern in an urban area. This communication system is being updated 22 

dynamically to train ANN data inputs to forecast the PEV actions. Figure 1 depicts the modeling framework of the 23 

proposed method. The framework utilizes previous drivers’ arrival and departure times data to forecast the arrival 24 

time and departure time in the future. To train the ANN to forecast the arrival time and departure time for each 25 

travel category, the travel data are classified according to the behavioral similarity by the unsupervised k-means 26 

algorithm since the NHTS travel data are not classified based on different travel behaviors. In this regard, the arrival 27 

time and departure time variables have been independently analyzed using the R-ANN method. It must be noticed 28 

that the main goal of this approach is forecasting the trip length, which is required to determine the PEVs charging 29 

demand. On the other hand, to forecast the trip length, in addition to the historical data of trip length, we also 30 

employed the arrival time and departure time. In this paper, two common types of ANN training methods were 31 

applied to validate the results and accurately analyze the effects of R-ANNs.  32 
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Figure 1: The proposed framework to model PEVs-TB  2 

 The formulation of the most common ANNs methods can be expressed in classic and Rough structures: 3 

2.2.1. Classic ANN 4 

The conventional ANN structure can be categorized into two groups:  5 

2.2.1.1.  Multilayer perceptron ANN with error back propagation learning method 6 

The first ANN group is dubbed Multi-Layer Perceptron (MLP) neural network. In this structure, the Conventional 7 

Error Back Propagation (CEBP) algorithm based on gradient descent theory is used to train ANN (Li et al., 2012). 8 

The proposed ANN, which is depicted in Figure 2 has two layers, the activation functions of the first and second 9 

layers are defined as sigmoid and linear function, respectively. Feed-forward equations are defined as follows: 10 

𝑛𝑒𝑡ଵ
ଵሺ𝑘ሻ ൌ ሺ𝑤ଵ

ଵሺ𝑘ሻሻ். 𝑋 (11)

𝑛𝑒𝑡ଶ
ଵሺ𝑘ሻ ൌ ሺ𝑤ଶ

ଵሺ𝑘ሻሻ். 𝑋 (12)

𝑂ଵሺ𝑘ሻ ൌ ሾ𝑂଴
ଵሺ𝑘ሻ, 𝑓ଵ

ଵሺ𝑛𝑒𝑡ଵ
ଵሺ𝑘ሻሻ, 𝑓ଶ

ଵሺ𝑛𝑒𝑡ଶ
ଵሺ𝑘ሻሻሿ் (13)

𝑛𝑒𝑡ଵ
ଶሺ𝑘ሻ ൌ ሺ𝑤ଵ

ଶሺ𝑘ሻሻ். 𝑂ଵሺ𝑘ሻ (14)

𝑂ଵ
ଶሺ𝑘ሻ ൌ 𝑓ଵ

ଶሺ𝑛𝑒𝑡ଵ
ଶሺ𝑘ሻሻ    (15)
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Figure 2: Multilayer perceptron neural network 12 
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According to the gradient descent method, the CEBP equations (learning strategy) are defined as follows: 1 

Eሺkሻ ൌ
1
2

ሺ𝑒ଵ
ଶሺ𝑘ሻሻଶ ൌ

1
2

ሺ𝑑ሺ𝑘ሻ െ 𝑜ଵ
ଶሺ𝑘ሻሻଶ ൌ

1
2

ሺ𝑑ሺ𝑘ሻ െ 𝑓ሺ𝑛𝑒𝑡ଵ
ଶሺ𝑘ሻሻሻଶ (16) 

∇𝑤ଵ
ଶ൫𝐸ሺ𝑘ሻ൯ ൌ

𝜕𝐸ሺ𝑘ሻ
𝜕𝑤ଵ

ଶሺ𝑘ሻ
ൌ

𝜕𝐸
𝜕𝑛𝑒𝑡ଵ

ଶ ൈ
𝜕𝑛𝑒𝑡ଵ

ଶ

𝜕𝑤ଵ
ଶ ሺ𝑘ሻ (17) 

∇𝑤ଵ
ଵ൫𝐸ሺ𝑘ሻ൯ ൌ

డாሺ௞ሻ

డ௪భ
భሺ௞ሻ

ൌ
డா

డ௡௘௧భ
మ ൈ

డ௡௘௧భ
మ

డ௢భ
భ ൈ

డ௢భ
భ

డ௡௘௧భ
భ ൈ

డ௡௘௧భ
భ

డ௪భ
భ ሺ𝑘ሻ   (18) 

∇𝑤ଶ
ଵ൫𝐸ሺ𝑘ሻ൯ ൌ

𝜕𝐸ሺ𝑘ሻ
𝜕𝑤ଶ

ଵሺ𝑘ሻ
ൌ

𝜕𝐸
𝜕𝑛𝑒𝑡ଵ

ଶ ൈ
𝜕𝑛𝑒𝑡ଵ

ଶ

𝜕𝑜ଵ
ଵ ൈ

𝜕𝑜ଵ
ଵ

𝜕𝑛𝑒𝑡ଶ
ଵ ൈ

𝜕𝑛𝑒𝑡ଶ
ଵ

𝜕𝑤ଶ
ଵ ሺ𝑘ሻ 

(19) 

ANN weights are then updated as follows: 2 

∆𝑤௝
௦ሺ𝑘ሻ ൌ െ𝜂 

௪∇𝑤௝
௦൫𝐸ሺ𝑘ሻ൯ (20) 

∆𝑤௝
௦ሺ𝑘ሻ ൌ 𝑤௝

௦ሺ𝑘 ൅ 1ሻ െ 𝑤௝
௦ሺ𝑘ሻ ൌ െ𝜂 

௪∇𝑤௝
௦൫𝐸ሺ𝑘ሻ൯ (21) 

𝑤௝
௦ሺ𝑘 ൅ 1ሻ ൌ 𝑤௝

௦ሺ𝑘ሻ െ 𝜂 
௪∇𝑤௝

௦ሺ𝐸ሺ𝑘ሻሻ (22) 

The sigmoid function is the most common activation functions applied in ANNs. However, the function when faced 3 

with large inputs becomes saturated and disrupts the training of the ANN (Hikawa, 2003). The saturation condition 4 

reduces the accuracy and efficiency of the ANN. Using the activation function with flexible parameters is one way 5 

to avoid the saturation condition. By changing the parameters of the flexible functions, the behavior of these 6 

functions is reformed to prevent saturation during the training process. The Classic sigmoid activation function and 7 

tanh are expressed in equations (23) and (24). The flexible sigmoid and tanh activation function with more internal 8 

variables are then expressed in equations (25) and (26). Figures 3 and 4 show the behavior of flexible activation 9 

functions. 10 

 
Figure 3: Flexible Sigmoid function for different values of ψ 

 
Figure 4: Flexible tanh function for different values of ψ 

𝑓൫𝑛𝑒𝑡ሺ𝑘ሻ൯ ൌ
1

1 ൅ 𝑒ି௡௘௧ሺ௞ሻ (23)       

𝑓൫𝑛𝑒𝑡ሺ𝑘ሻ൯ ൌ
1 െ 𝑒ି௡௘௧ሺ௞ሻ

1 ൅ 𝑒ି௡௘௧ሺ௞ሻ    (24)       

𝑓ሺ𝑛𝑒𝑡ሺ𝑘ሻ, 𝜓ሺ𝑘ሻሻ ൌ
2|𝜓ሺ𝑘ሻ|

1 ൅ 𝑒ି௡௘௧ሺ௞ሻൈటሺ௞ሻ (25)       

𝑓ሺ𝑛𝑒𝑡ሺ𝑘ሻ, 𝜓ሺ𝑘ሻሻ ൌ
1

𝜓ሺ𝑘ሻ
ൈ

1 െ 𝑒ି௡௘௧ሺ௞ሻൈటሺ௞ሻ

1 ൅ 𝑒ି௡௘௧ሺ௞ሻൈటሺ௞ሻ (26)       

In this method, in addition to the weights, the coefficient of the activation functions ሺ𝜓ሻ is trained. The formulations 11 
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for training the flexible activation function parameters are defined as follows: 1 

∆𝜓ሺ𝑘ሻ ൌ െ𝜂ట ൈ
𝜕𝐸ሺ𝑘ሻ

𝜕𝜓ሺ𝑘ሻ
 (27) 

𝜓ሺ𝑘 ൅ 1ሻ ൌ 𝜓ሺ𝑘ሻ ൅ 𝜂ట ൈ
𝜕𝐸ሺ𝑘ሻ

𝜕𝜓ሺ𝑘ሻ
 (28) 

2.2.1.2. Multilayer perceptron ANN based on Levenberg–Marquardt Training  2 

The CEBP algorithm based on first-order derivative methods is the most popular training method of ANN. The 3 

second-order derivative method, however, significantly increases the speed of ANN training (Wilamowski and Yu, 4 

2010). The LM strategy is then developed by combining the Newton and CEBP methods, which quickly forecasts 5 

more accurate results. While the Newton method uses the Hessian matrix, the LM method uses the Jacobian matrix. 6 

The Jacobian matrix is an approximated form of Hessian matrix which is shown in equation (29) (Lv et al., 2018), 7 

and LM method equations are defined in equation (30) (Behnood and Golafshani, 2018): 8 

𝐻ሺ𝑘ሻ ൌ
డమா

డ௪మ ൌ 𝛻ଶ𝐸ሺ𝑘ሻ ൌ

⎣
⎢
⎢
⎢
⎢
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⎡

డమா

డ௪భ
మ     

డమா

డ௪భడ௪మ
      

డమா

డ௪మడ௪భ
  

డమா

డ௪మ
మ   

…   
డమா

డ௪ಿೢడ௪భ

…  
డమா

డ௪ಿೢడ௪మ

⋮ ⋮  ⋮

డమா

డ௪భడ௪ಿೢ
   

డమா

డ௪మడ௪ಿೢ
  …  

డమா

డ௪ಿೢ
మ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (29) 

𝐻ሺ𝑘ሻ ൎ 𝐽ሺ𝑘ሻ்𝐽ሺ𝑘ሻ (30) 

Derived from the steepest descent method and Newton algorithm, the update rule of LM algorithm is proposed as: 9 

∆𝑤ሺ𝑘ሻ ൌ ሺ𝐽ሺ𝑘ሻ்𝐽ሺ𝑘ሻ ൅ 𝜇ሺ𝑘ሻ𝐼ሺ𝑘ሻሻିଵ𝐽ሺ𝑘ሻ்𝑒௅ିெሺ𝑘ሻ  (31) 

The Jacobian matrix and the error vector are then defined as: 10 
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  (32) 
 

The training procedure is defined as follows (Lv et al., 2018): 11 

𝑤ሺ𝑘 ൅ 1ሻ ൌ 𝑤ሺ𝑘ሻ െ 𝜂௪ሺሺ𝐽்ሺ𝑘ሻ𝐽ሺ𝑘ሻ ൅ 𝜇ሺ𝑘ሻ𝐼ሻିଵ𝐽்ሺ𝑘ሻ𝑒௅ିெሺ𝑘ሻ (33) 

In the LM method, the learning procedure is switched between Gauss-Newton and gradient descent methods. As 12 
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the magnitude of the μሺ𝑘ሻ approaches zero, the LM switches to the Gauss-Newton method, and with increasing the 1 

μሺ𝑘ሻ value, the LM switches to the gradient descent method (Lera and Pinzolas, 2002). The process starts with 2 

small μሺ𝑘ሻ values to use the Gauss-Newton method and benefits from its high convergence speed. If a step does 3 

not yield to a smaller error, then it repeats the step with higher μሺ𝑘ሻ until the error is decreased. 4 

2.2.2. ANN based on Rough structures 5 

In the study of real systems, due to the limitation of measuring instruments and environmental noise in input data, 6 

there is always uncertainty in the final results. Several studies have proposed different methods to scrutinize 7 

uncertainty in different phenomena. In an earlier study, Lingras (Lingras, 1996) introduced the Rough Neurons by 8 

combining the Rough structure with the ANN. Rough Neuron can be considered as a pair of neurons called upper 9 

and lower bounds. In Rough neurons, when x is considered as a feature variable, 𝑥  and 𝑥  are the lower and upper 10 

bounds, respectively. 11 

2.2.2.1. Rough multilayer perceptron neural network with error back propagation learning method  12 
 13 
Rough neuron configuration is depicted in Figure 5 and the proposed R-ANN is depicted in Figure 6. The complete 14 

formulation for a multi-layer perceptron ANN, whose hidden layer is considered as the Rough structure is expressed 15 

as follows:  16 

 17 
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Figure 5: Rough neuron configuration 19 

Feed forward equations are defined as follow (He et al., 2014): 20 

𝑛𝑒𝑡௅ೕ
௦ ሺ𝑘ሻ ൌ ሺ𝑤௅௝

ଵ ሺ𝑘ሻሻ். 𝑋 (34) 

𝑛𝑒𝑡௎ೕ
௦ ሺ𝑘ሻ ൌ ሺ𝑤௎௝

ଵ ሺ𝑘ሻሻ். 𝑋 (35) 
For the rough multilayer perceptron neural network with error back propagation learning method, one hidden layer 21 

is considered. 22 

𝑂௅ೕ
௦ ሺ𝑘ሻ ൌ min ሺ𝑓௝

௦ ൬𝑛𝑒𝑡௅ೕ
௦ ሺ𝑘ሻ൰ , 𝑓௝

௦ ൬𝑛𝑒𝑡௎ೕ
௦ ሺ𝑘ሻ൰ሻ (36) 

𝑂௎ೕ
௦ ሺ𝑘ሻ ൌ max ሺ𝑓௝

௦ ቆ𝑛𝑒𝑡௅ ೕ

௦ ሺ𝑘ሻቇ , 𝑓௝
௦ ൬𝑛𝑒𝑡௎ೕ

௦ ሺ𝑘ሻ൰) (37) 

𝑂௝
௦ሺ𝑘ሻ ൌ 𝛾௝

ௌ𝑂௅ೕ
௦ ሺ𝑘ሻ ൅ 𝜆௝

ௌ𝑂௎ೕ
௦ ሺ𝑘ሻ (38) 

The 𝛾and 𝜆 coefficients in equation (38) represent the effect of upper and lower bound values, respectively. Back 23 

Propagation equation (learning strategy), according to the gradient descent method, is applied to the learning 24 

process. The second layer is not Rough and its training strategy similar to the MLP with CEBP method and defined 25 

as (Ahmadi and Teshnehlab, 2017):  26 
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∆𝑤௝௜
ଶሺ𝑘ሻ ൌ െ𝜂௪

 𝜕𝐸
𝜕𝑤௝௜

ଶ ሺ𝑘ሻ (39) 

The first layer neurons are rough and have upper and lower bounds weights. They are trained in accordance with 1 

the following formulas: 2 

∆𝑤௅ೕ
ଵ ൌ െ𝜂௪

 𝜕𝐸
𝜕𝑤௅ೕ
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ଵ ሺ𝑘ሻ (40) 
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Figure 6: Rough MLP neural network with error back propagation learning method 4 

2.2.2.2. Rough Multilayer perceptron neural network based on Levenberg–Marquardt Training 5 

In this section, the combination of LM and Rough structure is applied. As previously stated, ANNs based on the 6 

Rough structure is effective in reducing noise and data uncertainty. In this method, the neurons of the middle layer 7 

are considered to be Rough. The training equations of the ANN’s weights are the same as the Levenberg–Marquardt 8 

method, and the upper and lower neurons are trained through the second order derivative method. The Jacobian 9 

matrix based on Rough structure is defined as: 10 
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2.2.3. Recurrent Artificial Neural Network based on Rough structures 1 

The Recurrent Neural Networks, based on their structures, are capable of forecasting dynamic phenomena with 2 

high precision. The unique feedback loops in these configurations enable them to process sequences of data. They 3 

can process information in two directions: first, the flow of the information from initial input to final output, like 4 

feedforward neural networks and second, the feedback loop of information back into the network with 5 

backpropagation throughout the computational process. 6 

 7 
2.2.3.1. Recurrent Rough multilayer perceptron neural network with error back propagation learning 8 

method  9 

The Recurrent Rough Artificial Neural Network (RR-ANN) based on Elman structure has been shown in Fig. 7. 10 
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Figure 7: Recurrent Rough MLP neural network with error back propagation learning method 12 

This structure, only contains a feed-forward network with additional units dubbed as context neurons. Context 13 

neurons receive input from the hidden layer neurons. Feed forward equations are defined as follows: 14 
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Other feed forward equations are defined as Rough networks in previous section. According to the CEBP equations, 15 

training procedure for the context neurons are considered as follows: 16 
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2.2.3.2. Recurrent Rough Multilayer perceptron neural network based on Levenberg–Marquardt Training 1 

 In RR-ANN the training procedure is same as Rough neurons but context neurons are added in the Jacobian matrix 2 

which  increase the number of training parameters (Fu et al., 2015).  3 

3. NUMERICAL STUDY 4 

The PEV input dataset and smart grid topology are presented in this section. 5 

3.1. PEV and power system dataset characteristics 6 

To forecast the PEVs load demand, we use the roulette wheel technique (Cheng et al., 2016) to randomly allocate 7 

the type of PEVs to the network. The travel behavior is obtained based on the 2017 NHTS database (“National 8 

Household Travel Survey,” 2018) including arrival and departure time and trip length. The market penetration rate 9 

for all PEVs models is also obtained from Alternative Fuels Data Center (“Alternative Fuels Data Center,” 2018) 10 

which consists an all-inclusive information about US advanced transportation systems (Table 1). Furthermore, the 11 

battery capacity is selected according to the model of each PEV (Cheng et al., 2016). 12 

Table 1: PEVs' Input Data (“Alternative Fuels Data Center,” 2018) 13 
PEV Model Total 

Number 
Battery 
capacity 
(kWh) 

Max. 
Charging 

Rate(kWh) 

PEV Model Total 
Number 

Battery 
capacity 
(kWh) 

Max. 
Charging 

Rate(kWh) 
Nissan LEAF 103,578 30 6.6 VW e-Golf 4,589 26.5 6.6 
Tesla Model S 93,277 100 17.2 Mercedes B-Class E 3,312 36 10 

BMW i3 24,721 42 7.4 Kia Soul EV 2,993 30.5 6.6 
Fiat 500E 10,229 24 6.6 Mitsubishi i-MiEV 2,098 16 3.6 

Chevrolet Spark 7,369 19 7.6 Honda Fit EV 1,071 20 6.6 
Ford Focus EV 6,839 33.5 6.6 BMW Active E 965 33 6.4 

The suggested methodology is applied to a distribution network feed by six 150 (KVA) wind turbines. For more 14 

details about the benchmark power system topology and its specifications, see (Carrano et al., 2007). The system 15 

information - load, electricity price - is obtained from Ontario Independent Electricity System Operator (IESO) 16 

(“The Independent Electricity System Operator (IESO)” 2017), Furthermore, the distribution network parameters 17 

have been gathered in 24 hours period for June, July and August 2018.  18 

3.2. Error calculation criteria 19 

To evaluate the accuracy and verification of the proposed ANN approach, three common different error criteria are 20 

implemented: the Mean absolute error (MAE), the Mean Absolute Percentage Error (MAPE) and the Root Mean 21 

Square Error (RMSE) (Yu et al., 2017).  22 
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To further validate the simulation results the R-squared performance metric is also considered. R-square is a well-23 

known metric in forecasting literature (Behnood and Golafshani, 2018; Golafshani and Behnood, 2018). The higher 24 
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R-squared value, implies the more accurate forecasting results. The R-squared is defined as follows (Yuan et al., 1 

2018): 2 

𝑅ଶ ൌ 1 െ
∑ ൫௒೒ି௒෠೒൯

మ೙బ
೒సభ

∑ ൫௒೒ି௒ത೒൯
మ೙బ

೒సభ

  (50) 

The accuracy of the results depends on the initial weights values and since these values are randomly selected, in 3 

this study the training procedure has been performed 100 times and the best results are considered to determine the 4 

different error criteria. To avoid overfitting, the dropout technique has been employed during the training process 5 

(Srivastava et al., 2014). 6 

4. RESULTS 7 

Three scenarios are developed to evaluate the proposed method. The PEV-TB in each of the scenarios is forecasted 8 

using different ANNs methods (is done using MATLAB 9.3 software) and the optimal charging algorithm (the 9 

developed NLP problem is solved by CONOPT4 solver in GAMS software) is executed for a one-day period on a 10 

PC with an Intel Core i7, 3.4 GHz CPU and 16 GB of RAM. To verify the accuracy of the proposed method, the 11 

part of the data is considered not seen by the ANN during the training procedure and it is used as real data (Quan 12 

et al., 2014; Wang et al., 2017). In order to increase the accuracy of total imposed load on the distribution network, 13 

the intermittent behavior of load, price and wind power is considered by R-ANN techniques in PEV-TB simulation 14 

period. 15 

4.1.  Scenario 1 16 

First, the traditional ANN is employed, where CEBP learning based on first-order derivative strategy and the 17 

Levenberg–Marquardt based on second-order derivative theory are applied to train ANN. The input data for 18 

network training is divided as follows: 80% of the data is used for network training, 10% for validation, and 10% 19 

for testing. The test results of the ANN training procedure are shown in Table 2. 20 

Table 2: Different error criteria for scenario 1 21 
Error 

criteria 

CEBP  LM 

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile)  

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile) 

MAE  5.33 3.68 11.33 4.43 2.69 9.09 

RMSE  6.35 4.49 15.90 5.16 3.18 12.56 

MAPE (%) 31.86 34.77 37.28 26.45 25.44 29.90 

 22 

The accuracy of the results is then verified based on different error criteria. As shown in Table 2, the Levenberg–23 

Marquardt method has a higher accuracy under different error criteria. The optimal charging algorithm is 24 

implemented for one day with the results obtained from different ANN methods and real data. The PEVs load is 25 

shown in Figure 8 for different modes. 26 
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 1 
Figure 8: PEVs Load profiles for different forecasting methods in scenario 1 2 

Levenberg–Marquardt learning method shows higher accuracy than CEBP learning method, but it still deviates 3 

significantly from the actual results obtained from real data. The difference between estimated and real PEVs load 4 

demand affect the aggregators benefits. 5 

4.2. Scenario 2 6 

In this section ANNs with the Rough structure have been used to forecast the PEV-TB. The Fragmentation of data 7 

into training, validation and testing is also similar to the previous scenario. The forecasting error of ANN with 8 

Rough structures are shown in Table 3.  9 

Table 3: Different error criteria for scenario 2 10 
Error 

criteria 

R-CEBP R-LM 

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile) 

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile) 

MAE 4.12 2.53 7.84 1.81 2.90 5.87 
RMSE 4.80 3.20 11.27 2.17 2.60 8.11 

MAPE (%) 24.63 23.92 25.82 17.12 17.34 19.32 

As can be seen from Table 3, the accuracy of the results has been improved compared to scenario 1. Same as the 11 

previous scenario, the PEVs load is shown in Figure 9 for different modes.  By increasing the accuracy of 12 

forecasting PEV-TB, as shown in Figure 9, the imposed load on the power grid by PEVs is forecasted with more 13 

accuracy. This is important since the aggregators manage their proposed price in accordance with PEV owners and 14 

upstream distribution network based on forecasted PEV’s load demand. 15 
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 1 
Figure 9: PEVs Load profiles for different forecasting methods in scenario 2 2 

4.3. Scenario 3 3 

In this part, RR-ANN have been utilized to forecast the PEV-TB. Division of data set are the same as previous 4 

scenarios. The forecasting errors are shown in Table 4.  5 

Table 4: Different error criteria for scenario 3 6 
Error 

criteria 

RR-CEBP RR-LM 

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile) 

Arrival time 

(hour) 

Departure time 

(hour) 

Trip Length 

(mile) 

MAE 2.15 3.45 6.42 1.68 2.43 5.48 
RMSE 2.61 4.04 9.04 2.03 2.79 8.10 

MAPE (%) 20.33 20.64 21.12 15.90 16.19 18.03 

As shown in Table 4, employing recurrent structure resulted in about 2-3 % improvement in MAPE error criteria 7 

due to the ability of the recurrent network in forecasting behavior of the dynamic systems. The resultant PEVs load 8 

with different approaches is illustrated in Figure 10. As stated before, aggregator gains more profit using more 9 

precise method for forecasting PEV-TB. 10 

 11 
Figure 10: PEVs Load profiles for different forecasting methods in scenario 3 12 

 13 

 14 
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4.4. DISCUSSION 1 

The simulation results show that the Levenberg–Marquardt method based on RR-ANN, which uses a second-order 2 

derivative to train and minimize the error rate, provides more accurate results compared to the other methods. In 3 

RR-ANNs, instead of using definite weights and neurons, interval weights are considered with rough neurons, and 4 

the internal loop from recurrent structure provided more accurate outcomes. An accurate evaluation of the different 5 

error criteria of the forecasting results presented in Tables 2-4 shows that employing ANN with Rough structure 6 

has a significant impact on improving the precision of the final results. Figures 11-13 compared the LM, R-LM 7 

and RR-LM results with MCS method and real data to show how considering the correlation between different 8 

variables such as arrival time, departure time and trip length can enhance the accuracy of PEVs load forecasting.  9 

 10 

 11 
Figure 11: PEV-TB forecasting results for LM, MCS and real data 12 

 13 
 14 
 15 
 16 

 17 
Figure 12: PEV-TB forecasting results for R-LM, MCS and real data 18 

 19 
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 1 
Figure 13: PEV-TB forecasting results for RR-LM, MCS and real data 2 

As the results show, in the MCS method, which is a benchmark method in forecasting PEV-TB, the results are 3 

more focused around the mean value of data, since the correlation between different parameters is not considered. 4 

When the forecasting results are centralized around mean, the trips are very similar, and the variety of trips is very 5 

low, which could be very different from real trips topology and makes the aggregators to not have the accurate 6 

PEV-TB forecasting. The high tendency of forecasted trips around the average points would create fake high spikes 7 

in the PEVs optimal charging load profile, which do not happen in the reality. It has been also depicted in Figures 8 

8-10, where forecasting PEV-TB with MCS increases the peaks of the PEVs load profile by 200kW compared to 9 

real trips. The proposed method, however, forecast the spikes in PEVs load profile more smoothly and closer to 10 

the real data. According to distribution network constraints and electric market policies, high spikes in PEVs load 11 

profile significantly affect the price of aggregators’ purchasing power form upstream network. 12 

For evaluating the forecasting results, R-squared performance metric is employed for the trip length as it is the 13 

most important parameter in PEV-TB (Figure 14). As the simulation results show, RR-LM has the highest R-14 

squared value, 0.95. The results again emphasize on the influence of rough structure neurons on improving the 15 

performance of ANN method in forecasting travel behavior.  16 
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Figure 14: Trip length Regression between different method outputs and targets 
(a): CEBP, (b): LM, (c): R-CEBP, (d): R-LM, (e): RR-CEBP, (f): RR-LM 

The PEV-TB forecasting method while including the correlation of the various parameters by using the RR-LM 1 

method, is more consistent with the actual data than the LM method by itself. The PEV-TB forecasting results 2 

based on different ANN methods suggest using Rough based ANN with recurrent structure in the study of 3 
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phenomena with high uncertainty. By forecasting the PEV-TBs more precisely, we can envisage the PEVs imposed 1 

load on the network more accurately by up to 4.25 percent in comparison to MCS. The aggregator, therefore, would 2 

exchange energy with the upstream grid and PEV owners more meticulously. To elucidate the significance of this 3 

subject, Table 5 illustrates a complete comparison of cost of optimal charging procedure in different scenarios 4 

along with R-Squared values and average value of MAPE in different scenarios.  5 

Table 5: Total results for scenarios 1-3 for 210 PEV in a day  6 

Scenarios Price ($) 
Aggregator 

Financial Loss 
($) 

R-Squared for 
trip length 
forecasting 

Average 
Forecasting 

error (MAPE%) 
Real 3825.032 ___ ___ ___ 
Scenario 1 CEBP 3849.809 24.777 0.83641 34.636 

LM 3817.754 7.277 0.86838 27.263 
Scenario 2 R-CEBP 3830.478 5.446 0.89690 24.790 

R-LM 3829.465 4.432 0.94479 17.926 
Scenario 3 RR-CEBP 3829.722 4.690 0.90991 20.696 

RR-LM 3829.151 4.119 0.95880 16.706 
Monte Carlo 3811.283 13.749 ___ ___ 

To verify the proposed approach, the actual travel data are compared with the forecasted travel data by different 7 

methods from the cost perspective. As the results show, with the improvement in the forecasting of PEV-TB, the 8 

amount of aggregator financial loss is significantly reduced by up to 0.044 $/PEV in a day and about 16.06 $/PEV 9 

in a year; R-LM method compared to MCS. The average aggregator financial loss under the studied artificial 10 

intelligence-based method (CEBP, LM, R-CEBP, R-LM, RR-CEBP and RR-LM) can be reduced by 23% 11 

compared to the MCS. This is critical since the aggregators would have to pay to the upstream network or PEV 12 

owners in terms of the difference between the estimated and the actual price of PEV charging. Using the RR-ANN 13 

method in forecasting PEV-TB for 210 PEVs, reduces the aggregators’ financial loss by $9.63 per day compared 14 

to the most common MCS method. Interestingly, employing rough structure neurons has a significant influence on 15 

the aggregator’s financial loss. Considering the small sample size in our study, the actual financial loss in the real 16 

world would be much greater in a wider time-span. The practical implementation of the above method, in addition 17 

to the communication infrastructure for sending charge signals, requires a rich database. Since our proposed method 18 

is a data-driven approach, the data plays an essential role in its real-world implication. Therefore, it is necessary to 19 

utilize new macroscopic methods to obtain the travel behavior parameters of the region understudy (Amirgholy 20 

and Gao, 2017). These data sets are usually available through local transportation agencies. Hence, with sufficient 21 

amount of data, our proposed method can be applied in real distribution systems. Afterwards, a sophisticated data 22 

processing center is required in order to employ the proposed artificial intelligent approach and optimal charging 23 

procedure. 24 

5. CONCLUSION 25 

In this paper, Rough Artificial Neural Network (R-ANN) approach was applied to forecast the Plug-in Electric 26 

Vehicles Travel Behavior (PEVs-TB) and the PEVs load on the distribution network. Given the ability of the R-27 

ANNs in analyzing phenomena with high uncertainty, they can improve the accuracy of forecasting results. 28 

Employing the rough neurons in recurrent based network improved the forecasting accuracy considering the 29 
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dynamic behavior of the system. In addition, in this paper, two training methods, Conventional Error Back 1 

Propagation (CEBP) and Levenberg–Marquardt, are utilized which are defined based on first and second order 2 

derivatives, respectively. The results showed that Levenberg–Marquardt method is more accurate in PEVs-TB. To 3 

investigate the importance of accurate forecasting of PEV-TB, optimal charging procedure was performed in 4 

different modes. The results showed that by using Recurrent Rough Artificial Neural Network (RR-ANN), the 5 

aggregator could forecast PEV-TB and PEVs load more accurately than Monte Carlo Simulation (MCS) which is 6 

a benchmarking method in this field and gains more efficient operating profit. In fact, forecasting the PEV-TB for 7 

the aggregator is very important, since the greater the difference between the forecasted cost and the real value, the 8 

aggregator should spend more money on the upstream distribution network or PEV owners, which will reduce the 9 

aggregator's profit. Results from our study recommend using rough based networks to forecast the PEV-TB in 10 

contemplation of investigating the PEV optimal charging problem from the aggregators’ point of view. The findings 11 

imply the importance of accurate forecasting of PEVs’ load demand on the network in order to moderate the PEVs’ 12 

charging cost and help to increase the penetration of PEVs in the transportation fleet. 13 
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