Artificial Intelligence In Medicine 142 (2023) 102571

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Research paper ' 1)

Check for

A genetic programming-based convolutional deep learning algorithm for o
identifying COVID-19 cases via X-ray images

Mohammad Hassan Tayarani Najaran
School of Computing Science, University of Hertfordshire, Hatfield, UK

ARTICLE INFO ABSTRACT

Keywords:
Genetic programming
Deep learning

Evolutionary algorithms have been successfully employed to find the best structure for many learning
algorithms including neural networks. Due to their flexibility and promising results, Convolutional Neural
Networks (CNNs) have found their application in many image processing applications. The structure of CNNs

gptiml_zanon Jeorith greatly affects the performance of these algorithms both in terms of accuracy and computational cost, thus,
t 1 ; . . .
C\g:/lllDl_olr;ary agoritams finding the best architecture for these networks is a crucial task before they are employed. In this paper, we

develop a genetic programming approach for the optimization of CNN structure in diagnosing COVID-19 cases
via X-ray images. A graph representation for CNN architecture is proposed and evolutionary operators including
crossover and mutation are specifically designed for the proposed representation. The proposed architecture
of CNNs is defined by two sets of parameters, one is the skeleton which determines the arrangement of the
convolutional and pooling operators and their connections and one is the numerical parameters of the operators
which determine the properties of these operators like filter size and kernel size. The proposed algorithm in
this paper optimizes the skeleton and the numerical parameters of the CNN architectures in a co-evolutionary
scheme. The proposed algorithm is used to identify covid-19 cases via X-ray images.

Convolutional Neural Networks

1. Introduction was proposed to optimize the architecture of the CNN. To optimize a
CNN, two sets of parameters should be optimized, one is numerical and
the other is the skeleton parameters of the algorithm. The proposed
evolutionary algorithm aims at optimizing both sets of parameters.
Because optimizing each set of parameters requires a specific set of
evolutionary operators, the paper proposes two evolutionary processes

that optimizes the architecture in a co-evolutionary scheme.

The spread of the Severe Acute Respiratory Syndrome CoronaVirus
2 (SARS-CoV-2) which causes CoronaVirus Disease 2019 (COVID-19)
has caused grave concerns for governments around the world. Apart
from the number of people who have succumb to death due to the
disease, the pandemic has results in great economic impact on societies
around the world. In this sense, identifying the COVID-19 cases is
crucial for contact tracing and curbing the outbreaks. There are many
testing methods used to identify the cases, and among the widely used
ones is Reverse Transcription-Polymerase chain reaction (RT-PCR). This
method uses reverse transcription to obtain DNA and then applies
Polymerase Chain Reaction (PCT) to amplify the DNA for analysis.
This method is accurate, but the is costly, requires time and medi-
cal resources. Therefore, developing low-cost and rapid methods for
identifying the infected cases is a matter of importance.

2. Convolutional neural networks

Convolutional Neural Networks (CNNs) have attracted the attention
of many researchers due to their great potentials in image process-
ing tasks. These networks have been widely used in a variety of
tasks including face recognition [1], natural language processing [2],
handwritten recognition [3], object recognition [4], radiology image

Early in the epidemic, scientists discovered that analyzing CT im-
ages can be used for identifying covid-19 cases. It was shown that bilat-
eral pulmonary parenchymal ground glass and consolidative pulmonary
opacities is observed in the chest CT images of covid-19 patients.

The main objective of this paper is to develop a method for automat-
ically detecting COVID-19 cases via X-ray images. To implement such
an algorithm several sub-objectives have been identified. In the first
step, a CNN algorithm was developed. Then, an evolutionary algorithm

E-mail address: m.tayaraninajaran@herts.ac.uk.

https://doi.org/10.1016/j.artmed.2023.102571

processing [5] crowd counting [6], etc. Also, CNNs have been used
in other machine learning tasks like transfer learning [7-9]. Transfer
learning refers to storing knowledge about a solution to a problem
and using it for solving a related problem. Inspired by convolutional
model of cat visual cortex, CNNs were developed for processing video
signals [10]. The first version of CNNs, called LetNet-5 used back-
propagation algorithm [11] to optimize the connection weights. Since

Received 15 September 2022; Received in revised form 7 March 2023; Accepted 27 April 2023

Available online 9 May 2023

0933-3657/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/artmed
http://www.elsevier.com/locate/artmed
mailto:m.tayaraninajaran@herts.ac.uk
https://doi.org/10.1016/j.artmed.2023.102571
https://doi.org/10.1016/j.artmed.2023.102571
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2023.102571&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M.H.T. Najaran

then, a variety of different versions of CNNs are proposed including
VGGNet [12] and ResNet [13]. Different versions of CNNs vary in
architecture and weight connections, although majority of them utilize
different approaches of gradient decent for the optimization process
of the weights. The structure of the CNNs, namely convolutional op-
erators, pooling operators and non-linear activation functions greatly
affect the performance of the learning algorithm. This means that
finding the optimal structure of CNNs is very important to achieve
better results. Another set of parameters that affect the performance
of the learning process are the initial weights of the connections. The
performance of the gradient based algorithms depends on the initial
weights of the connections as they determine how fast the gradient
decent can reach the local optima, the quality of the local optima they
find and the chance of the algorithm escaping from low fitness local
optima. Thus finding the best architecture and the initial weights is a
matter of importance in the learning process.

2.1. Previous work

Due to the importance of the structure of the deep learning algo-
rithms, many research have been performed with the aim of optimizing
the CNNs structure [14]. Mainly the design is performed by experts
with rich knowledge about the field. However, there exist a need
for automatically designing the best structure for these models. Thus,
many research have attempted varies automatic methods to design
the best structure for CNNs. Examples of these works include stacked
auto-encoders [15,16], grid search, random search [17], Bayesian-
based Gaussian process (BGP) [18,19], tree-structured Parzen esti-
mators (TPE) [20], Reinforcement learning (RL) [21] and sequential
model-based global optimization (SMBO) [22]. Each of these methods
have their disadvantages. Since the grid search algorithm searches
through all the possible combinations of the parameters, it guarantees
the optimal set of parameters; however, the method is very com-
putationally expensive and is not practical for many of real world
applications including the structure design of CNNs. If the optimization
parameters are continuous, then the grid search should descritize the
search space which results in missing many areas in the search space.
The random search is a blind search that usually does not reach promis-
ing results. The problem with BGP is the extra parameters, known
as kernels that should be considered. In the optimization process of
TPE, each parameter is optimized independently, which is unrealistic
as there is huge dependency between the parameters.

A reinforcement learning scheme is proposed in [21] which per-
forms a search on the whole CNN architecture. In this method, as
a controller, a Recurrent Neural Network (RNN) is used to generate
the architectural parameters of the learning algorithms. For an archi-
tecture, the performance of the CNN is evaluated and used as the
reward to the RNN controller [23]. In [24], an e-greedy strategy is
used in Q-learning that exploits and explores the model space. Another
approach in finding the optimized structure of the networks is proposed
in [25], where the gradient based approach is used in the optimization
process. In this method, first a structure is selected and then a gradient
descent-based search algorithm is used to find the optimal architecture.
Although effective, the problem with this approach is that the algorithm
easily gets trapped in local optima. In [26], a method is proposed to
transform the discrete architecture space into continuous to enable the
gradient-based method. Because CNNs are computationally expensive,
they cannot be efficiently used in wearable devices. In order to optimize
these networks in terms of computational cost, a pruning algorithm is
proposed in [27] that uses the energy consumption of CNNs to guide
the pruning process.

Evolutionary algorithms have also been applied to the problem [28-
30] and have reached reasonable results. An evolutionary paradigm
is presented in [31] for optimizing hyper-parameters of deep learning
algorithms. In [32], a tree growth algorithm which is a type of swarm
intelligence algorithm is proposed for architecture design of CNNs.

Artificial Intelligence In Medicine 142 (2023) 102571

The genetic algorithms and grammatical evolution are used in [33] to
optimize CNN topology. A genetic programming approach is presented
in [34], in which the functional modules, such as convolutional blocks
and tensor concatenation are used as node functions and the CNN
structure is optimized. Among the most famous works in this field is
large evolution for image classification (LEIC) performed by Google as
an attempt to optimize the structure of CNNs [35]. LEIC implements
on 250 high-end computers a genetic algorithm without the crossover
operator which reaches competitive performance against the state of
the art algorithms. In [36], a standard GA is used to evolve CNNs, in
which the chromosomes have equal size.

While there are some works that have employed evolutionary algo-
rithms to optimize the architecture of CNNs, these works mainly focus
on optimizing the topology of the network. In these works, the learning
weights are left to be optimized via gradient descent and the hyper-
parameters are set manually. For example, AmoebaNet [37], which
provides the first large scale evolutionary optimization of topology.
A hierarchical representation is presented in [38] which allows a
structure to evolve nonmodular layers to emerge. In [34] a Cartesian
GP is used to create an architecture from modular blocks. Because
the weighting and the hyper-parameters play a crucial role in the
performance of CNNs, we believe that an evolutionary optimization
of CNNs should be devised that automatically and simultaneously
optimizes topology and weighting hyper-parameters. An evolutionary
algorithm that uses the same phenotype to represent and optimize these
two sets of parameters in the same process neglects the fact that each
type of optimization problem requires its own set of representation and
optimization procedure. Because the nature of numerical and topology
optimization is different, there requires an algorithm that is specifically
designed to optimize each optimization problem accordingly. In this
paper, we propose a co-evolutionary scheme, in which the weighting
parameters and the topological parameters of the CNN are optimized
in two parallel procedures. Two different representations and optimiza-
tion processes are devised in the algorithm, one is specifically designed
for topology and the other for hyper-parameters.

In the previous works, the topology of CNNs is considered as an
arrangement of operator blocks which are shuffled via evolutionary
algorithms to find the best topology [33,39-42]. In [33], for example,
the architectures are represented by a vector of blocks which limits
the number of possible architectures generated by the phenotype and
thus the search space of the architectures. In [33,36] the phenotype
is an arrangement of operational blocks in a one dimensional array,
which similarly limits the type of architectures that can be examined.
In this paper, we propose a flexible graph-based representation for
the solutions that is capable of generating and evaluating complex
architectures. The graph-based representation proposed in this paper,
unlike one or two dimensional representations in the literature, is
capable of representing and examining a wide variety of architec-
tures. The crossover and mutation operators presented in this paper
are specifically designed for the graph representation to generate and
explore all the possible architectures in this landscape.

2.2. CNN architecture optimization

As presented in Fig. 1, CNNs consist of a number of convolution and
pooling layers stacked on top of each other. In this example, two con-
volutional and two pooling operators are used. The structure consists of
four groups of feature maps and one fully connected layer at the tail.
All the elements of the four groups of the feature maps are flattened
and fed to the last layer. In general, CNNs consist of a combination
of the convolutional and pooling operators at the beginning and a
number of fully connected layers at the end of the pipeline. In CNNs,
not only the parameters of each block should be optimized, but also the
order of blocks determine the performance. Therefore, the optimization
algorithm should optimize the parameters of the blocks and the order
of the blocks simultaneously.

M.H.T. Najaran

Convolution Pooling Convolution Pooling

Flatten
Input Image >

Fig. 1. The architecture of CNNs, consisting of a combination of convolution and
pooling operators.

The input of the CNN is an nxn image that is processed in the
pipeline. In order to generate a feature map via the pipeline, a filter
should be defined for the convolution operator. The filter is a matrix
and is usually randomly initialized with a predefined size (its width
and height). The filter then slides over the image from the top left
to the top right of the input image with the step size called stride.
It then moves downward one step with the size equal to stride and
traverses the image. This process continues until the whole image is
covered. Each pixel in the feature map is then the sum of the products
of the corresponding pixels in the filter and the image. The convolution
operator here has some parameters that affect the performance of
the feature extraction process. The parameters are connection weight,
convolution type, filter width, filter height, number of feature maps, the
stride width and the stride height.

The pooling operator is similar to the convolution in the way it
traverses on the image to cover all the pixels. The difference is the
operation it applied. The pooling operator performs via a predefined
matrix called kernel some computations on the previous layers to col-
lect the average or the maximum value of the elements in the previous
layer. This operator is applied as layers to streamline the underlying
processed information by reducing the spatial size of the representation
to reduce the amount of computation, number of parameters and the
required memory. By combining the output of a cluster of neurons at
one layer into a single neuron in the next layer, the pooling operators
reduce the dimensions of the data. The parameters of each pooling layer
are the pooling type, stride height, stride width, kernel height, kernel width
and pooling type.

The other set of parameters that should be optimized is the con-
nection weight initialization. There are three main ways in which the
connection weights can be initialized. (1) First is to initialize all the
values connection weights with a constant value, like zero, one or any
other number. The problem with this method is that the initialization
is highly biased, so the performance of the search algorithms is sig-
nificantly affected which usually leads to not very satisfying results.
(2) The other way is to randomly initialize the values via a random
number generator with particular distribution. Examples of this is to
initialize the weights based on the Gaussian or uniform distribution.
This approach resolves the problem associated with the first approach;
however, there are some parameters in this method that should be
tuned. For example, for the Gaussian distribution function, the mean
and the standard deviation of all the connection weights should be
set. To manage this, the Xavier initializer performs a sampling based
on the neuron saturation before utilizing the sigmoid activation func-
tion [43]. Although successful, the Xavier initializer suffers from some
deficiencies. One is that these values are much related to the struc-
ture of the CNN, and if the structure is not optimized properly, the
initializer would not perform well either. The other problem is that
Xavier initializer uses sigmoid activation, while most of approaches
use ReLU as the activation function [13,44-46]. (3) The third way
is to initialize the values based on some prior expert knowledge. For
example, in [43], different initialization ways and their effect on the
performance of gradient descent algorithms are studied and it is shown
how prior knowledge can be used in the process.

In the optimization process of CNNs architecture consist of two main
parts. One is to find the best number of operational layer and their
combinatorial ordering, and the other is to optimize the numerical

Artificial Intelligence In Medicine 142 (2023) 102571

2

Fig. 2. The representation of solutions in a graph structure, where P represents the
pooling, C represents the convolution operators and F represent the fully connected
layers. When a node has more than one input, the inputs are aggregated via summation
@ or concatenate, ® operators.

parameters of the CNNs, like the kernel and filter size, initialization
weights, etc. To the best of our knowledge, all the works performed
in the area try to optimize the parameters and the architecture in
the same optimization process with the same genetic encoding. There
is, however, a major deficiency with this approach. The optimization
process of finding the best architecture for CNNs consists of two fitness
landscapes: a) the combinatorial ordering of the layers and b) the nu-
merical parameters of the CNN operators. The first fitness landscape is
the combinatorial optimization problem of skeleton of the architecture
and the second landscape is a numerical optimization problem of the
operators’ parameters. Although highly connected, these two landscape
are different in nature and should be optimized in different processes.
However, because these two are highly connected, the optimization
process for both should be performed in cooperation. In order to
overcome this, we propose a cooperation coevolution approach for
the optimization of the structure of CNNs. In our proposed method,
the optimization process consists of two threads that simultaneously
perform search to optimize the architecture in both landscapes. One
thread searches through the combinatorial ordering of the convolu-
tional and pooling operators fitness landscape, and the other thread
explores in the fitness landscape of the numerical parameters. These
two threads should perform in connection with each other as they are
highly related.

3. The proposed algorithm

In this section we introduce the proposed evolutionary algorithm
for optimization of deep CNNs architecture for the identification of
COVID-19 cases via X-ray images. In order to use genetic algorithms,
first a coding for the solutions should be proposed. As mentioned
before, there are two aspect of the CNNs architecture that should
be optimized, one is the combinatorial ordering of the convolutional
and pooling operators, and one is parameters of these operators. This
means that a coding should be proposed that represents both aspects.
In terms of the numerical parameters of the operators, a simple fixed-
size numerical coding can provide a reasonable representation. In terms
of the combinatorial optimization of the ordering of the operators,
however, it is more complicated. In this landscape, not only the order
of the operators should be optimized, but also the number of layers is
a matter of importance. There is no straight forward way of knowing
the optimal number of layers. Too few number of layers may result in
not enough processing and so not good performance. Too many layers,
on the other hand, will result in higher computational cost. It also may
result in poor performance as there will be more number of learning
parameters that the learning process needs to optimize. A consequence
of a larger number of learning parameters is a larger search space for
the learning algorithms which obviously makes the better solutions
harder to find. In this sense, not only the ordering of the convolutional
and pooling operators should be optimized, but also the number of
these operators should be adjusted. Therefore, the proposed coding
should be flexible enough to both search through the ordering of the
operators and the number of operators. To manage this, we propose a
graph coding for the solutions as presented in Fig. 2.

In this representation, each node in the graph represents an op-
erator. This graph coding gives a flexible representation that enables

M.H.T. Najaran

the algorithm to explore in the combinatorial fitness landscape of the
skeleton of CNNs. At the same time, the representation is flexible
enough to allow architectures with different number of layers, different
combination of connections, different number of operators, etc. It is
crucial in this problem to explore among CNNs with different number of
operators, as the number of operators greatly affect the performance of
the resulting CNN. There sits an operator in each node of this graph that
can be convolutional or pooling operators or fully connected layers.
Note that the fully connected layers are always at the tail of the CNNs.

The proposed representation is a directed graph, where the output
of previous layers are only connected to the operators in the next layers.
There are some parameters that determine the size of the CNN, which
are as follows,

* H: The number of rows in the graph

* W: The number of columns

» O: The maximum number of outputs of each operator
+ I: The maximum number of inputs to each operator

+ L: The maximum number of fully connected layers

« I: The levels-back parameter

In a CNN, the input of each operator at level ¢ comes from the output
of the operators in previous layers from ¢ —/ to ¢ — 1. Here I/, which is
called the level-back parameter, determines the maximum number of
layers a connection can shortcut.

When a node receives more than one input, then the inputs should
first be aggregated before they are fed to the operator. In this paper
we use summation, denoted as @ and concatenate, ® operators. The
concatenation operation concatenates two feature maps in the channel
dimension. If the input feature maps are of different sizes, the larger
image is downsampled via max pooling so the two become the same
size. The summation operator here performs an element-wise sum
of the input feature maps. If there are more than one channel, the
operation is performed channel by channel, and if the inputs are of
different sizes, the larger image is downsampled. If the input feature
maps have different number of channels, then the smaller feature map
is padded with zeros to increase the number of channels so the input
feature maps are with the same number of channels. Having these
operators makes the structure flexible to include shortcut connections
and branching layers as in GoogleNet [46] and Residual Net [13].

The nodes in this graph are each a vector of numerical values rep-
resenting the parameters of the operators. The operators are encoded
as follows,

1- Convolutional layer: the stride width, the stride height, the filter
width, the filter height, the number of feature maps, the convolutional
type, the standard deviation and the mean value of the filter elements.

2- Pooling layer: the stride width, the stride height, the kernel
width, the kernel height, the number of feature maps, the pooling type
chosen from the average or maximum.

3- Fully connected layer: the mean and standard deviation of the
connection weights and the number of neurons.

This representation allows the optimization algorithm to explore
both in the skeleton landscape, by searching in different orderings of
the operators and to search the fitness landscape of operator parameters
by manipulating the parameter values in each node. The main body of
the proposed algorithm is presented in algorithm 3.

At the beginning of the algorithm 3 the parameters of the structure
of the CNNs should be set. Here, W and H determine the maximum
size of the CNN. As discussed before, the size of CNN should be tuned
carefully as the performance of the learning algorithm and the com-
putational cost highly depend on the size of the neural network. The
parameters of the algorithms, i.e. the population size » and mutation
rate m should be set.

In step 1 of the algorithm 3, the population is initialized. In this
step, n individuals X', i = 1, ..., n are generated randomly. In order to
generate a random solution, a graph as presented in Fig. 2 is generated.

Artificial Intelligence In Medicine 142 (2023) 102571

Algorithm 1 The Proposed Algorithm

begin
=0
set the structure parameters, W, H, O, I, L, a and /
set the algorithm parameters, n, m
1. initialize the population Y,
2. while not termination condition do
begin
3. evaluates the individuals in Y,
4. select the parent solutions via tournament selection
5. if |(r/100)] mod2=0

begin
6. generate offsprings via skeleton-crossover and store
them in O,
7. perform skeleton-mutation on O, with probability m
else
8. generate offsprings via parameter-crossover and store
them in O,
9. perform parameter-mutation on O, with probability m
end

10. perform environmental selection on Y, U O,
and store it in Y,

T=71+1
end
1lreturn the best solution in Y,
end

For each node in the graph X,, (w = 1,....,W, h = 1,...,H), an
operator is inserted with the probability of a. To do so, a random
number r = R(0, 1) within is generated via a uniform random number
generator, and if r < a an operator is placed in the node X,.
Otherwise, the node is skipped and no operator is placed in the node.
For example in Fig. 2, there is no operator at the nodes X3,, X3
and X,s. The parameter a determines the sparsity of the graph. At
a = 1 the graph will have operators at all its rows and columns.
Note that a determines the sparsity at the initialization step, and the
optimization process will start from this configuration. Then, during
the optimization, the algorithm will evolve and optimize the sparsity,
so in the end, a very sparse or dense graph may be achieved.

If it is determined to place an operator in X, ;,, with the probability
of half a convolution or a pooling operator is placed in the node.
Because the pooling operators are adopted to streamline the underlying
processed information, there is not much sense in putting a pooling
operator at the first layer of the network where the input image is
fed. Thus, we set all the nodes at the first layer of the network to be
convolutional operators. Obviously, one can initialize the network to
have pooling operators at the first layer and the optimization algorithm
should have the ability to optimize the type of operators at each layer
and if it is better to have convolutional operators at the first layer,
the algorithm would automatically set them. However, some prior
knowledge like this can help to limit the search space of the algorithm
and accelerate the optimization.

When the operators are placed in the graph, the parameters of
the operators are set at random. For example, for the convolutional
operators the parameters connection weight, convolution type, filter width,
filter height, number of feature maps, the stride width and the stride height
are randomly set. The values of the filter or kernel matrices are also
set at random. All these values are optimized during the optimization
process. After placing the convolutional and pooling operators, the fully
connected layers are generated at random. The maximum number of
fully connected layers is O, thus, in order to generate these layers, a

M.H.T. Najaran

random number o = R(1, O) between 1 and O is generated using uni-
form random number generator and placed at the tail of the CNN. The
parameters of the fully connected layers are the connection weights.
Optimizing the connection weights individually is an arduous process
as there may exist a large number of weights to be optimized, which is
not possible to be performed in the evolutionary process. Therefore,
we only optimize the mean and standard deviation of the Gaussian
distribution functions that generate these weights. In the initialization
step, the parameters of the fully connected layers, i.e. the mean and the
standard deviation of the weights are initialized at random.

After placing the operators in the graph, the connections between
the nodes should be set. Setting the connections is performed in two
steps. In the first step, the input of all the nodes is determined. Because
all the nodes must have at least one input, we first set the input of all
the nodes to make sure no node remains without an input connection.
Because all the nodes should receive an input from previous layers, the
nodes at the first layer are connected to the input layer (input image).
Also, for the last layer of convolutional and pooling operators, where
the fully connected layers begins, the output of all convolutional and
pooling operators should be connected to the fully connected operators.
This is because the convolutional and pooling operators at the last
layer should not remain without an output as this would make them
redundant.

In the next step, the connections among the operators between the

first and last layers should be set. For all the operators without an input,
one of the operators from the previous layers is selected at random
and a connection is created. There are two constraint parameters that
should be taken into account in this process. First, is the levels-back
parameter, /, which determines the maximum number of layers a
connection can shortcut. Thus, the input of an operator at column c is
chosen from the operators at levels c—1 to c—I. Because it is preferred to
have connections to the closer layers, the operators at a closer layer are
chosen with higher probability. The probability of choosing an operator
from the column ¢’ (c =/ < ¢’ <c¢—1) is found as,
p(c) = e (@]
This equation indicates that the closer columns have exponentially
greater probability of being selected. Based on this probability, a col-
umn is chosen and an operator in the column is selected at random.

The other constraint parameter that should be taken into account is
O which determines the maximum number of outputs an operator can
have. If the number of outputs of the selected operator is equal to O,
another operator is selected at random.

After the input of all the operators is determined, the algorithm
should make sure that all the operators have at least one output,
because an operator without an output is useless. If there is an operator
without an output, one of the operators at the next columns is chosen at
random and a connection is made. Here, similar to choosing the input
connections, the operator is chosen from the columns ¢ + 1 to ¢ + /.
Similarly, the closer columns to the current column have exponentially
larger probability of being selected. The probability of choosing an
operator from the column ¢’ (¢ + 1 < ¢’ < ¢+ 1) is calculated as,

’
c—C
e

Zg—c’-ﬁ—l ec!
There is a constraint here, I which determines the maximum input an
operator can receive. If the selected operator has reached the maximum
number of inputs, then it is skipped and another operator is selected
via the same approach. The selection is performed until an operator is
found with the number of inputs less than 1.

The last step is to check the input of all the operators. If an operator
receives more than one input, then the inputs should be merged. For all
the operators with more than one input, a summation or concatenation
operator is chosen at random and placed at the input. If there are three

p(c’) =)

Artificial Intelligence In Medicine 142 (2023) 102571

or more inputs to an operator, the same merger operator is used for all
of them.

In step 3 of the algorithm 3, the solutions in the population are
evaluated via fitness function. In order to evaluate the solutions, a CNN
with the architecture proposed by the solution is generated, trained and
tested on the data and the accuracy of the classification is taken as the
fitness. In the training process, stochastic gradient descent algorithm is
used in this paper. Note that there is a huge number of weights that
should be optimized and gradient descent algorithms are usually better
choice than evolutionary algorithms.

In step 4, the tournament selection strategy is used to select the
parent solutions. In the problem of designing CNNs, there are two
objectives that should be satisfied. The first objective is to find a
structure that offers the best performance in terms of classification
accuracy. At the same time, there also exists the objective of minimizing
computational complexity of the algorithm. In many applications, for
example the implementation of learning algorithms on wearable de-
vices like smart phones or smart watches, there is always limitation on
energy consumption and thus computational budget. In this sense, any
selection algorithm devised for CNN architecture optimization should
take both the objectives into account. However, the weight of each
objective is different based on the application and the device on which
the algorithm is to implemented. For some devices like smart watches,
the limitation on computational complexity is huge, so the performance
should be sacrificed to a great degree. In some cases there may exist
powerful computers to process the task, so the performance of the
learning algorithm, in terms of accuracy, is much more important than
computational budget.

Algorithm 2 The Proposed Binary Tournament Selection

Input: Two individuals x; and x;, the performance and
the cost of the solutions

begin

1. rank all the solutions in the population based on their
accuracy and find f,(x;)

2. rank all the solutions in the population based on their
computation cost and find f.(x;)

3. for all solutions calculate f(x;) = ff,(x;) + (1 = f)f.(x;)

A£G < fO)

5. return x;

else
6. return x,
end

N

To mange this, we propose a selection mechanism presented in
algorithm 2 in which both objectives are taken into account. In the
proposed method, the solutions in the population are ranked based
on the accuracy of the classification of the CNN and the rank of a
solution, x is stored in f,(x). Then, the solutions are ranked based on
computational complexity of the CNNs and the rank of a solution, x, is
stored in f,(x). In the ranking process, the best solution is ranked first,
so the aim is to use a selection mechanism that selects solutions with
smaller f,(x) and f.(x). The proposed selection method first chooses
two solutions from the population randomly. Then for both solutions
calculates the value,

F) = Bfp,(x)+ (1 =) f(x). €))

The parameter 0 < f < | determines the weight of the two objectives.
A larger § means the algorithm tends to optimize the solutions based
on the performance of the CNN architecture in terms of accuracy and
a smaller g takes more the computational cost into account. At § = 0.5

M.H.T. Najaran

the algorithm treats both objectives with the same weight, at # = 1 only
the accuracy and at § = 0 only the computational cost are optimized.

We can also use multi-objective optimization approaches, like
SPEAII, that find the Pareto front. Such Pareto front consists of a variety
of solutions that satisfy different objectives to different degrees, so the
end user can choose from the Pareto front a solution that satisfies
their requirements. The advantage of the proposed method is that
the degree of the importance of each objective can be determined
before the optimization and the algorithm will focus on finding only
these solutions. For example, if the aim is to optimize the performance
of CNNs in terms of accuracy, f is set to 1 and the evolutionary
algorithm will focus only on the solutions that satisfy this objective.
Or if accuracy and computational cost are of the same importance,
p is set to 0.5 and the algorithm will focus on finding solutions that
satisfy both objective to the same degree. In algorithms that find
the Pareto front, however, the population always consists of solutions
that satisfy different objectives. This means that the solutions in the
population are scattered in the landscape around different local optima
each satisfying different objectives in different degrees. Exploitation
in these algorithms is sacrificed to achieve the diversity required for
the Pareto front. Exploitation in the proposed algorithm, on the other
hand, is performed better, because the population moves towards the
area in the fitness landscape in which the objectives are satisfied to the
required proportion. This way, the solutions in the population are all
have the same objective so search around the same local optima.

In step 5 of the algorithm, it is determined if the skeleton optimiza-
tion or the parameter optimization is performed. In CNNs, the skeleton,
which is the topology of the graph and the parameters of the operators,
which are numerical numbers should be optimized. Therefore the opti-
mization problem can be decomposed into two fitness landscapes which
are highly connected but of different natures. In this paper we propose
a co-evolutionary process to optimize the CNN architectures in both
fitness landscapes. In the proposed algorithm, the optimization process
swaps between the two fitness landscapes in each 100 iterations. For
100 iterations, the optimization process is performed to optimize the
skeleton of the CNNs while the parameters of operators are fixed. Then,
for 100 iterations, the skeleton (the graph) of the solutions is fixed
and the optimization is performed to optimize the parameters of the
operators, i.e filter and kernel size, stride size, etc. The algorithm keeps
switching between these two processes until the maximum number of
iterations is reached.

In step 6, the skeleton-crossover is applied. The procedure of
skeleton-crossover is presented in Fig. 3 where the two architectures at
the top are crossed over and the architecture at the bottom is achieved.
In order to apply the skeleton crossover between two architectures, a
crossover point is randomly selected that splits the two graphs into
two parts. The crossover point should be at the same place for both
individuals. The resulting individual receives one part from the first
individual and the other part from the second individual. When the
crossover is applied, the connections that connect two nodes in the
same part remain with no change. For example, in Fig. 3, the resulting
individual receives its left part from the first and its right part from the
second individual. All the connections between the nodes 11, 21, 31,
12, 22, 13 and 33 remain with no change in the resulting individual.
The same applies to the right part. Then, the connections among the
nodes that were connected to a node from a different part are set.

In order to set the connections at the border of the two parts, first
the input of the nodes of the right part are set. Each node at the right
part receives its input from the node at the same place it was connected
to in the parent individual. For example, in Fig. 3, the node 25 will be
connected to 12 and the node 24 gets connected to 33. Here, it does
not matter if the type of the source node changes. If in this process, a
node is to receive its input from a node that does not exist in the new
architecture, the closest same type node is chosen as the source. For
example, in the bottom parent, the node 34 is connected to the node
23, but in the resulting individual, there is no node at the place 23.

Artificial Intelligence In Medicine 142 (2023) 102571

In this case, the node 34 will receive its input from the closest node
to 23 which is 33. Closest node means the node with the minimum
Manhattan distance to the node. If there are more than one nodes
with the same distance, the same type node has priority. That is if
the source node in the parent architecture is a convolutional operator,
a convolutional operator in the new architecture has priority. If two
nodes are the at the same distance and are of the same type, the tie
is broken by randomly choosing a node. Note that in the process, the
constraint on the maximum number of outputs for a node should be
satisfied. Thus, if a node is chosen to receive its output from a node
that has reached its maximum outputs, another node should be chosen
as the source node as described (the next closest node).

After the input of the nodes at the right part are set, some nodes
at the left part may remain with no output. For example, the node 13
remains with no output. The nodes at the left part with no connection
are connected to the node to which they were connected in the parent
individual. In the case of Fig. 3, node 12 is connected to the node 25. If
in the crossover process the number of inputs for a node changes from
one to more than one, then a concatenation or summation operator is
randomly selected and put at the input. Node 15 has one input in the
parent and two inputs in the offspring individual, so a merging operator
(summation in this case) is chosen and placed at the input.

In step 7 of the algorithm the skeleton-mutation is performed. The
skeleton-mutation performs in the following ways.

1- Select randomly a node in the graph, and change its type (if
it is convolutional, it is changed to pooling and vise versa). When
changed, the common parameters between convolutional and pooling
operators, namely filter/kernel size, stride width and stride height
remain with no change. The parameters that are different are initialized
randomly. By retaining the common parameters, the operator main-
tains the already optimized parameters. The convolutional operators
extract features and the pooling operators reduce dimensionality of the
generated information. This mutation operator is devised to explore in
the dimension of convolutional to pooling operator ratio. A CNN with
too many convolutional and too few pooling operators will produce
too many features which usually results in high computational cost
and poor performance. Similarly, a CNN with a small convolutional
to pooling operator ratio does not extract enough features, leading to
low performance. This mutation explores to find the best balance in the
ratio of convolutional to pooling operators.

2- Randomly select two nodes in the graph and swap their operators.
This operator explores in the combinatorial ordering of the existing
operators in the graph. For a certain set of operators, different ordering
of operators results in different performance. This mutation is devised
to find the best ordering of the operators.

3- Randomly remove from or add to the graph a node. A slot in
the graph is chosen randomly, if there is a node in the slot, the node
and its connections are eliminated. When eliminating the node, some
nodes that were connected to this node may lose all their input or
output connections. If this happens, the procedure explained in the
initialization is performed to set a new input or output for the node.
If there is no node in the slot, a convolutional or pooling operator is
placed in the slot. The operator is chosen at random. The input and
output of the newly placed node are set using the process described in
the initialization step. This mutation is devised to optimize the number
of operators in the network.

4- Randomly remove or add a connection to the graph. If removing
a connection leaves a node with no input or output, the process in the
initialization is performed to set the input or output for the node. This
mutation operator is devised to explore in the connection space.

5- Randomly select an operator with more than one inputs and swap
the merging operator. That is, if the inputs are merged via summation,
@, change the operator to ® and vice versa.

The proposed algorithm optimizes in a co-evolutionary paradigm,
the skeleton and the parameters of the CNNs. The crossover operator
proposed in Fig. 3 is adopted to optimize the skeleton of the networks.

M.H.T. Najaran

Fig. 3. Example of skeleton crossover that performs on the topology of the CNNs. The
crossover is performed on the two CNNs at the top and the CNN at the bottom is
achieved. The straight line between the column 3 and 4 show the crossover point.

Presented in Fig. 4, we propose a crossover to optimize the parame-
ters of the network. Each node in the graph is an operator which is
represented by its set of numerical parameters. In order to perform
the parameter-crossover between the two individuals in Fig. 4, the
convolutional, pooling and fully connected operators in each individual
are aligned. Aligning is performed by selecting the nodes from top
to bottom from the columns. The columns are selected from left to
right. After aligning the operators, a crossover is performed between the
operators. Note that because some places in the graph may be empty,
or the operators at a place can be any of pooling or convolutional op-
erators, the crossover is not necessarily applied between the operators
at the same place in the graph. For example, in Fig. 4, the pooling
operator at the place 12 in the top parent is matched with the pooling
operator at 32 in the bottom one. Similarly is for the convolutional
operator at 22 with 12. Also, some operators may not find a pair an so
are passed to the offspring without undergoing the crossover operator.
At step 9 of the algorithm, the parameter-mutation is performed. The
parameter-mutation selects a node from the graph at random and sets
the numerical parameters of the operator in the node randomly.

4. Dataset

In this paper, we use three sets of publicly available COVID-19
data that are classified into normal, pneumonia and COVID-19 cases.
The data are all X-ray images in jpg format. In order to have a large
enough dataset, we combined two sets of data. The first set of data
are prepared by Cohen et al. [47], which contain data about MERS,
SARS and COVID-19. In this dataset, there are 76 COVID-19 cases that
we use in this paper. The other dataset contains 219 X-ray images
and is available in [48]. Combined, the two datasets contain 295
images. The third dataset contains images of 53 patients suffering
from pneumonia [49]. We specifically use the third dataset because
it contains pneumonia chest images that include viral and bacterial
infections. This is important as it provide a good testing measure for
distinguishing pneumonia caused by COVID-19 from other types of
pneumonia. There are three classes in the resulting dataset: COVID-19,
normal and pneumonia class. The covid-19 class contains 295 images,
the normal class contains 65 images and the pneumonia class contains
98 images, so a total of 458 images are used in this paper.

4.1. Data preprocessing

In order for the learning algorithms to properly classify the images,
some preprocessing on the images should be applied. The preprocessing

Artificial Intelligence In Medicine 142 (2023) 102571

11 11 12 32 fl f1
N Cros=oer NN [P Crossover [p] | N Crossover ML
21 21 24 24 2

31, 31 35 15

- Crossover - [[P_]_Crossover [P]

22 12 35

- Crossover - \I’

13 23

- Crossover -

33 33

- Crossover -

14 34

- Crossover -

34 25

- Crossover -

15

2

Fig. 4. Example of the parameter crossover between the two solutions at the top. After
crossover, the solutions keep their skeleton and the crossover is only applied to the
parameters. The operators of each skeleton are aligned and then the crossover is applied
between the corresponding operators. If an operator remains with no pair, no crossover
will be applied to it. The resulting architectures are at the bottom, where the operators
that are affected by crossover are shown by gradient colors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

step in this paper consists of two steps. The first step is to enhance
the images. In this paper we use the technique presented in [50] to
enhance the images. The second step is to further improve the image
quality via a technique called stacking. The stacking technique uses
different images captured at different focal distances and combines
them to produce a better quality image. This method is usually used
in order to improve the quality of a dataset by removing noise and
other artefacts that affect images. Because the X-ray images are taken
in different environmental parameters, there requires a preprocessing
phase before they are prepared for training. We use the codes presented
in [51] to perform the preprocessing. In this work, we first apply image
enhancement to build the enhanced dataset. Then using the stacking
technique, the original dataset is combined with the enhanced dataset

to create the stacked dataset.

M.H.T. Najaran

True Negative

—
=2

Actual False Negative

'I1
=

True Negative

Predicted FP .False Positive
_I
=

Fig. 5. The TP, TN, FP, and FN in the confusion matrix for multi-class classification
problems. The rows show the actual class and the columns represent the predicted
classes.

5. Experimental results

In order to test the algorithms the confusion matrix metrics are used
in this paper. The metrics are based on True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN) cases. These values
are easy to grasp for binary classification. For multi-class classification,
however, they are more complicated. For a given class k, TP is defined
as the number of cases that have correctly been classified. The FN
cases are the cases belonging to the class k that have been incorrectly
classified. The FP cases are the cases that do not belong to the class k,
but have incorrectly classified as k. The TN cases are all the cases that
neither belong to the class k, nor have been classified as k. To clarify,
Fig. 5 shows the cases in the confusion matrix.

In this paper, the following metrics have been used to compare the
algorithms.

Se = TPT+—PFN, @
Sp = e ®)
Pre = %, 6)
A= T TR T @

The overall accuracy is the total number of correctly classified cases
divided by the total number of data records.

In order to compare the proposed algorithm with state of the art al-
gorithms, we use CAE-2 [52], TIRBM [53], PGBM+DN-1 [53], ScatNet-
2 [54], RandNet-2 [55], LDANet-2 [55], SVM+RBF [56], SVM+Poly
[56], NNet [56], SAAA-3 [56], SqweezNet (SQNet) [57], MobileNetV2
[58], DBN-3 [56], LSTM and the algorithms proposed in [33,39-42].

The parameters of these algorithms including the maximum length
of each layer have been set based on the conventions in the commu-
nity [59]. For the evolutionary algorithm, the population size is set to
10, the number of iterations to 1000 (i.e. 10,000 fitness evaluations),
the crossover-rate is 0.9 and the mutation rate is 0.1. The number of

Artificial Intelligence In Medicine 142 (2023) 102571

columns and rows are set to 15 and 3 respectively and the number of
fully connected layers is set to 1. This size should be sufficient for the
type of problem we are dealing with. For the fitness evaluation, 80%
of data are used for training and 20% for testing. In order to simplify
the search process, we have set the width and the height of the filter,
stride and kernels to be the same (these are square matrices). The width
and height of the stride in convolutional layer are set to one. For the
pooling layers, the width and height of the stride are set to the same
size as their kernel. It is common to set these values in the deep learning
community. For the rival evolutionary optimization algorithms for CNN
architecture design, we used the same set of parameters suggested in
the reference papers.

In order to find the best deep training epoch and the epoch for
catching the tendency of the performance, we randomly select some
individuals and train them with a large number of epoch. We then
record the classification errors at each epoch and then choose the best
number of epoch which makes a trade-off between the computational
cost and performance. In all experiments the deep training epoch is set
to 100 and the epoch for catching the tendency of the performance is set
to 10. We use Tensorflow [60] to implement our proposed algorithm.
All the experiments are averaged over 30 runs.

Table 1 shows the experimental results on different CNNs. In terms
of overal accuracy, as the data suggest, the best performance among
the algorithms is achieved by the proposed evolutionary optimiza-
tion of the CNNs architecture. After the proposed algorithms are the
algorithms proposed in [39,40]. In terms of sensitivity of detecting
COVID-19 cases, the best performance is achieved by the proposed algo-
rithm followed by the algorithms proposed in [41,42]. The algorithms
that optimize the architecture perform better than preset architectures.
This suggests that tuning the architecture for a problem results in better
performance. Overall, all the algorithms perform similar in detecting
the COVID-19 and pneumonia cases, while their performance is worse
when it comes to detecting normal cases.

Here, we present some extra experiments on the proposed algo-
rithms. As explained before, we perform two steps of preprocessing
on the images to prepare them for classification. In this section, we
perform the classification without applying the preprocessing to show
the effect of the process on the performance of the algorithms.

Table 2 shows the experimental results when only enhancement is
performed on the data before the classification phase.

Table 3 shows the experimental results when only stacking is per-
formed on the data before the classification phase.

Table 4 summarizes the statistical analysis on the data in Tables 1-3.
Here, “Prop Alg”. represents the proposed algorithm, “Enhn” represents
the results when only enhancement is applied and “stacking” represents
when stacking is applied. The ANOVA and Kruskal-Wallis are applied
to test the significance of the difference between the results achieved
by the set of algorithms used in this paper for comparison. These are
for the data corresponding to COVID-19 results. In these tests, ‘SS’
represents the sum of squares of each source, ‘df’ shows the degree of
freedom associated with each source, ‘MS’ is the mean squared (ie. the
ratio SS/df) and ‘Chi-square’ is the ratio of mean squares. In this table,
the p-values are very small, so the null-hypothesis that the samples
are taken from the same mean is rejected with a high probability
significance level.

Fig. 6, shows the progress of the evolutionary algorithm in finding
the optimal architecture of CNN. These are for five metrics Se., Sp.,
Pre. Acc and overall accuracy. As mentioned, the number of iterations
in the evolutionary process is 1000. The proposed algorithm performs
in a co-evolutionary scheme, where after every 100 iterations, the
evolution swaps between the optimization of numerical parameters and
the skeleton. This behavior can be observed in Fig. 6. The vertical
lines in this figure show the points at which the evolutionary process
swaps between the two optimization schemes. As the graph suggests,
quickly after the evolutionary process swaps (just after the vertical
lines), the performance improves more rapidly, until it becomes slower

M.H.T. Najaran Artificial Intelligence In Medicine 142 (2023) 102571

Table 1 Table 2
The experimental results for different algorithms. The data are averaged over 30 runs. The experimental results for different algorithms when only enhancement is applied to
Junior is the method that is presented in [39], Ma is [40], Gottapu is [41], Sun is the input images. The data are averaged over 30 runs. Junior is the method that is
[42], and Baldominos is [33]. presented in [39], Ma is [40], Gottapu is [41], Sun is [42], and Baldominos is [33].
Alg. Classes Se. Sp. Pre. Acc. OA Alg. Classes Se. Sp. Pre. Acc. OA
COVID-19 96.27 92.02 95.62 94.76 93.01 COVID-19 94.92 92.02 95.56 93.89 91.92
LSTM Normal 86.15 97.71 86.15 96.07 LSTM Normal 86.15 97.46 84.85 95.85
Pneumonia 87.76 97.22 89.58 95.2 Pneumonia 86.73 96.11 85.86 94.1
COVID-19 97.63 93.25 96.32 96.07 93.23 COVID-19 95.59 89.57 94.31 93.45 91.92
SVM+RBF Normal 89.23 96.18 79.45 95.2 SVM+RBF Normal 86.15 97.71 86.15 96.07
Pneumonia 82.65 98.61 94.19 95.2 Pneumonia 84.69 96.94 88.3 94.32
COVID-19 97.29 92.64 95.99 95.63 93.89 COVID-19 94.92 93.25 96.22 94.32 92.36
SVM+Ploy Normal 78.46 98.98 92.73 96.07 SVM+Ploy Normal 87.69 96.95 82.61 95.63
Pneumonia 93.88 96.67 88.46 96.07 Pneumonia 87.76 96.67 87.76 94.76
COVID-19 97.63 93.87 96.64 96.29 93.45 COVID-19 95.93 93.87 96.59 95.2 92.14
SAA-3 Normal 78.46 97.96 86.44 95.2 SAA-3 Normal 81.54 96.95 81.54 94.76
Pneumonia 90.82 96.67 88.12 95.41 Pneumonia 87.76 96.11 86 94.32
COVID-19 97.29 92.64 95.99 95.63 93.23 COVID-19 96.27 91.41 95.3 94.54 92.14
NNet Normal 86.15 96.95 82.35 95.41 NNet Normal 76.92 97.2 81.97 94.32
Pneumonia 85.71 98.06 92.31 95.41 Pneumonia 89.8 96.94 88.89 95.41
COVID-19 97.63 93.87 96.64 96.29 93.89 COVID-19 96.61 91.41 95.32 94.76 92.36
DBN-3 Normal 86.15 97.46 84.85 95.85 DBN-3 Normal 81.54 97.2 82.81 94.98
Pneumonia 87.76 97.78 91.49 95.63 Pneumonia 86.73 97.22 89.47 94.98
COVID-19 95.59 94.48 96.91 95.2 94.32 COVID-19 93.9 95.71 97.54 94.54 92.58
CAE-2 Normal 95.38 97.2 84.93 96.94 CAE-2 Normal 86.15 95.42 75.68 94.1
Pneumonia 89.8 98.33 93.62 96.51 Pneumonia 92.86 97.5 91 96.51
COVID-19 96.95 93.25 96.3 95.63 93.01 COVID-19 95.59 96.32 97.92 95.85 91.92
TIRBM Normal 81.54 97.71 85.48 95.41 TIRBM Normal 81.54 95.67 75.71 93.67
Pneumonia 88.78 96.67 87.88 94.98 Pneumonia 87.76 96.11 86 94.32
COVID-19 98.31 96.32 97.97 97.6 95.2 COVID-19 95.25 92.64 95.9 94.32 92.79
PGBM Normal 90.77 96.95 83.1 96.07 PGBM Normal 87.69 97.46 85.07 96.07
Pneumonia 88.78 98.89 95.6 96.72 Pneumonia 88.78 96.94 88.78 95.2
COVID-19 97.97 95.09 97.31 96.94 95.85 COVID-19 97.63 95.09 97.3 96.72 94.54
ScatNet-2 Normal 84.62 98.73 91.67 96.72 ScatNet-2 Normal 89.23 97.46 85.29 96.29
Pneumonia 96.94 98.33 94.06 98.03 Pneumonia 88.78 98.06 92.55 96.07
COVID-19 98.31 94.48 96.99 96.94 95.63 COVID-19 96.95 93.25 96.3 95.63 94.1
RandNet-2 Normal 89.23 98.22 89.23 96.94 RandNet-2 Normal 87.69 98.47 90.48 96.94
Pneumonia 91.84 98.89 95.74 97.38 Pneumonia 89.8 97.22 89.8 95.63
COVID-19 97.29 95.71 97.62 96.72 96.07 COVID-19 96.61 95.09 97.27 96.07 94.54
LDANet-2 Normal 92.31 99.49 96.77 98.47 LDANet-2 Normal 89.23 98.47 90.63 97.16
Pneumonia 94.9 97.5 91.18 96.94 Pneumonia 91.84 96.94 89.11 95.85
COVID-19 96.61 95.09 97.27 96.07 94.32 COVID-19 95.93 93.25 96.26 94.98 92.36
SQNet Normal 87.69 97.46 85.07 96.07 SQNet Normal 87.69 96.95 82.61 95.63
Pneumonia 91.84 97.78 91.84 96.51 Pneumonia 84.69 96.67 87.37 94.1
COVID-19 97.29 95.09 97.29 96.51 95.63 COVID-19 96.95 93.25 96.3 95.63 93.23
MBNet-2 Normal 90.77 98.47 90.77 97.38 MBNet-2 Normal 83.08 97.2 83.08 95.2
Pneumonia 93.88 98.33 93.88 97.38 Pneumonia 88.78 97.5 90.63 95.63
COVID-19 98.30 95.71 97.66 97.82 97.38 COVID-19 98.31 97.55 98.64 98.03 96.51
Junior Normal 96.92 99.49 96.92 99.13 Junior Normal 93.85 97.71 87.14 97.16
Pneumonia 92.86 99.17 96.81 97.82 Pneumonia 92.86 99.17 96.81 97.82
COVID-19 98.31 96.93 98.32 98.25 97.16 COVID-19 97.63 95.09 97.3 96.72 95.85
MA Normal 92.31 98.98 93.75 98.03 Ma Normal 87.69 99.49 96.61 97.82
Pneumonia 94.9 98.89 95.88 98.03 Pneumonia 95.92 97.5 91.26 97.16
COVID-19 98.64 96.93 98.31 98.03 96.51 COVID-19 97.97 93.87 96.66 96.51 95.41
Gottapu Normal 89.23 98.22 89.23 96.94 Gottapu Normal 86.15 98.22 88.89 96.51
Pneumonia 94.9 98.89 95.88 98.03 Pneumonia 93.88 98.89 95.83 97.82
COVID-19 98.31 95.09 97.32 97.16 96.51 COVID-19 98.31 96.32 97.97 97.6 95.2
Sun Normal 92.31 98.98 93.75 98.03 Sun Normal 84.62 98.47 90.16 96.51
Pneumonia 93.88 98.89 95.83 97.82 Pneumonia 92.86 97.22 90.1 96.29
COVID-19 96.27 98.77 99.3 97.16 96.29 COVID-19 97.63 93.87 96.64 96.29 94.98
Baldominos Normal 93.85 97.96 88.41 97.38 Baldominos Normal 90.77 97.71 86.76 96.72
Pneumonia 97.96 98.06 93.2 98.03 Pneumonia 89.8 98.89 95.65 96.94
COVID-19 98.98 98.16 98.98 98.25 98.25 COVID-19 98.64 96.93 98.31 98.03 96.94
GPNet Normal 96.92 99.75 98.44 99.34 GPNet Normal 93.85 98.47 91.04 97.82
Pneumonia 98.31 98.89 96.04 98.91 Pneumonia 93.88 99.17 96.84 98.03
later on (before reaching the next vertical line). This is because when improvements become harder. Then, when the optimization swaps to
the algorithm optimizes one set of parameters (skeleton or numerical the other set of parameters, the improvements become quicker again to
parameters), after some iterations, it reaches a local optimum where reach local optima. This is because when the algorithm optimizes one

M.H.T. Najaran

Table 3

The experimental results for different algorithms when only stacking is applied to
the input images. The data are averaged over 30 runs. Junior is the method that is
presented in [39], Ma is [40], Gottapu is [41], Sun is [42], and Baldominos is [33].

Alg. Classes Se. Sp. Pre. Acc. OA

COVID-19 95.93 92.02 95.61 94.54 91.48
LSTM Normal 75.38 96.95 80.33 93.89

Pneumonia 88.78 96.11 86.14 94.54

COVID-19 95.59 90.18 94.63 93.67 91.92
SVM+RBF Normal 81.54 97.46 84.13 95.2

Pneumonia 87.76 96.94 88.66 94.98

COVID-19 96.61 92.02 95.64 94.98 92.79
SVM+Ploy Normal 84.62 96.95 82.09 95.2

Pneumonia 86.73 97.78 91.4 95.41

COVID-19 97.29 92.64 95.99 95.63 92.36
SAA-3 Normal 72.31 96.95 79.66 93.45

Pneumonia 90.82 96.94 89 95.63

COVID-19 94.92 93.25 96.22 94.32 92.14
NNet Normal 80 97.46 83.87 94.98

Pneumonia 91.84 95.83 85.71 94.98

COVID-19 95.93 93.25 96.26 94.98 92.58
DBN-3 Normal 75.38 97.96 85.96 94.76

Pneumonia 93.88 95.83 85.98 95.41

COVID-19 98.64 92.02 95.72 96.29 93.67
CAE-2 Normal 76.92 97.96 86.21 94.98

Pneumonia 89.8 97.78 91.67 96.07

COVID-19 96.27 92.02 95.62 94.76 91.48
TIRBM Normal 81.54 96.44 79.1 94.32

Pneumonia 83.67 96.67 87.23 93.89

COVID-19 97.97 93.87 96.66 96.51 94.54
PGBM Normal 87.69 97.46 85.07 96.07

Pneumonia 88.78 98.61 94.57 96.51

COVID-19 97.97 95.09 97.31 96.94 95.2
ScatNet-2 Normal 89.23 97.71 86.57 96.51

Pneumonia 90.82 98.61 94.68 96.94

COVID-19 97.63 96.32 97.96 97.16 94.98
RandNet-2 Normal 86.15 97.96 87.5 96.29

Pneumonia 92.86 97.5 91 96.51

COVID-19 97.29 97.55 98.63 97.38 95.41
LDANet-2 Normal 89.23 98.47 90.63 97.16

Pneumonia 93.88 96.94 89.32 96.29

COVID-19 95.93 93.87 96.59 95.2 93.23
SQNet Normal 86.15 97.46 84.85 95.85

Pneumonia 89.8 96.94 88.89 95.41

COVID-19 96.61 98.16 98.96 97.16 94.76
MBNet-2 Normal 87.69 97.2 83.82 95.85

Pneumonia 93.88 97.22 90.2 96.51

COVID-19 99.66 91.41 95.45 96.72 96.07
Junior Normal 86.15 99.49 96.55 97.6

Pneumonia 91.84 99.44 97.83 97.82

COVID-19 98.87 95.09 97.33 97.6 96.07
Ma Normal 90.77 98.98 93.65 97.82

Pneumonia 90.82 98.33 93.68 96.72

COVID-19 98.64 94.48 97 97.16 95.85
Gottapu Normal 87.69 98.22 89.06 96.72

Pneumonia 92.86 99.17 96.81 97.82

COVID-19 97.97 95.71 97.64 97.16 95.85
Sun Normal 87.69 98.22 89.06 96.72

Pneumonia 94.9 98.61 94.9 97.82

COVID-19 98.60 93.87 96.69 97.16 95.63
Baldominos Normal 89.23 97.96 87.88 96.72

Pneumonia 89.8 99.44 97.78 97.38

COVID-19 98.98 98.16 98.98 98.25 96.51
GPNet Normal 92.31 97.96 88.24 97.16

Pneumonia 93.88 98.61 94.85 97.6

set of parameters (for example the skeleton), the local optima of the
other set of parameters (numerical parameters) change slightly which

10

Artificial Intelligence In Medicine 142 (2023) 102571

00— ————————————

Acc.
OA

90 L

R I I RO SN
PP PSSP

Fig. 6. The progress of the evolutionary algorithm in finding the best architecture for
CNN.

opens room for improvement once it is the turn for the optimization of
numerical parameters.

6. Conclusion

The optimization process of CNN architecture consists of finding
the best arrangement of convolutional and pooling operators, the filter
and kernel size, stride size, etc. We believe that the architecture of
CNNs consists of two distinct aspects, the skeleton that determines the
arrangement of the operators and the numerical parameters of the op-
erators. In the proposed algorithm, the optimization of the skeleton and
the parameters are separated into distinct threads in a co-evolutionary
paradigm. We propose a graph structure for the individuals in which
each node is an operator and each edge represents a connection be-
tween two operators. We propose the crossover and mutation operators
for the skeleton and the parameter optimization processes. The pro-
posed crossover and mutation operators are flexible enough to generate
any possible architecture for CNNs, so are able to explore the search
space for all possible architecture for the learning algorithms. We set
some constraints on the architecture, such as the number rows and
columns or the connection among the nodes to limit the search space.

By separating the optimization of the skeleton from the optimization
of numerical parameters into two threads, the algorithm performs the
search process in each landscape separately. This helps the searching
operators to explore the search space better as they need to deal will a
smaller landscape at each thread. Because of the relationship between
the two landscapes, the co-evolutionary paradigm is suggested so the
search threads performing in the two landscapes are interconnected.

In this paper we propose a genetic programming algorithm for
finding the best architecture of CNNs in detecting COVID-19 from
normal and pneumonia cases via X-ray images. The best architecture
found by the proposed algorithm in this paper is based on the data
we used for classification. We believe that there is no optimal ar-
chitecture that suits all applications and each application requires its
own architectural tuning. The existing CNN architectures are usually
fixed structures that are tuned beforehand and are used for a variety
of applications. The advantage of the proposed algorithm is that it
can be used to find the best architecture for any given application.
For example, the architecture found by the proposed algorithm in this
paper is specifically suitable for detecting COVID-19 cases and it is not
necessarily the best architecture for, for example, detecting cars. Surely,
such an architecture may be subject to over-fitting to the application
it is used for (COVID-19 detection in this case). However, this is not

M.H.T. Najaran

Table 4

Artificial Intelligence In Medicine 142 (2023) 102571

ANOVA and Kruskal-Wallis test of the data in Tables 1-3. Here, “Prop Alg.” represents the proposed algorithm, “Enhn” represents the results when only enhancement is applied

and “stacking” represents when stacking is applied.

Kruskal-Wallis ANOVA
Source SS df MS F Prob>F SS df MS Chi-sq Prob>Chi-sq
Columns 5.02e—02 19 2.64e-03 1.88e+01 7.88e—49 7.86e+06 19 4.13e+05 2.61e+02 1.49e—-44
Prop Alg. Error 8.15e-02 580 1.41e-04 1.01e+07 580 1.75e+04
Total 1.32e-01 599 1.80e+07 599
Columns 1.01e-01 19 5.31e-03 3.40e+01 2.3%-81 1.02e+07 19 5.39e+05 3.41e+02 7.69e—61
Se. Enhn Error 9.07e-02 580 1.56e—04 7.76e+06 580 1.34e+04
Total 1.91e-01 599 1.80e+07 599
Columns 8.63e—02 19 4.54e-03 6.61e+01 2.55e—131 1.27e+07 19 6.68e+05 4.22e+02 9.87e-78
Stacking Error 3.98e-02 580 6.87e-05 5.31e+06 580 9.15e+03
Total 1.26e-01 599 1.80e+07 599
Columns 1.91e-01 19 1.01e-02 7.44e+01 1.24e-141 1.35e+07 19 7.11e+05 4.50e+02 1.88e—-83
Prop Alg. Error 7.84e-02 580 1.35e-04 4.49e+06 580 7.73e+03
Total 2.70e-01 599 1.80e+07 599
Columns 2.37e-01 19 1.25e-02 9.13e+01 3.12e-160 1.42e+07 19 7.46e+05 4.72e+02 4.74e—-88
Sp. Enhn Error 7.92e-02 580 1.36e—-04 3.83e+06 580 6.59e+03
Total 3.16e-01 599 1.80e+07 599
Columns 2.95e-01 19 1.55e-02 2.34e+02 5.05e—257 1.58e+07 19 8.31e+05 5.25e+02 2.67e—-99
Stacking Error 3.86e—02 580 6.65e—05 2.21e+06 580 3.82e+03
Total 3.34e-01 599 1.80e+07 599
Columns 4.71e-02 19 2.48e-03 3.01e+01 7.85e-74 1.03e+07 19 5.43e+05 3.43e+02 2.43e-61
Prop Alg. Error 4.78e—02 580 8.24e-05 7.68e+06 580 1.32e+04
Total 9.49e-02 599 1.80e+07 599
Columns 7.94e—02 19 4.18e-03 2.82e+01 8.05e—70 1.03e+07 19 5.44e+05 3.44e+02 1.82e-61
Pre. Enhn Error 8.60e—02 580 1.48e-04 7.66e+06 580 1.32e+04
Total 1.65e-01 599 1.80e+07 599
Columns 9.89e-02 19 5.21e-03 4.21e+01 5.88e-96 1.19e+07 19 6.27e+05 3.97e+02 2.22e-72
Stacking Error 7.17e-02 580 1.24e-04 6.08e+06 580 1.05e+04
Total 1.71e-01 599 1.80e+07 599
Columns 5.20e—-02 19 2.73e-03 2.24e+01 2.83e-57 8.82e+06 19 4.64e+05 2.94e+02 3.99e-51
Prop Alg. Error 7.08e-02 580 1.22e-04 9.18e+06 580 1.58e+04
Total 1.23e-01 599 1.80e+07 599
Columns 1.02e-01 19 5.36e-03 3.04e+01 2.34e-74 1.05e+07 19 5.51e+05 3.48e+02 2.11e-62
Acc. Enhn Error 1.02e-01 580 1.76e—04 7.53e+06 580 1.30e+04
Total 2.04e-01 599 1.80e+07 599
Columns 9.72e-02 19 5.11e-03 5.80e+01 1.82e-120 1.26e+07 19 6.61e+05 4.18e+02 7.94e-77
Stacking Error 5.11e-02 580 8.82e-05 5.44e+06 580 9.38e+03
Total 1.48e-01 599 1.80e+07 599
Columns 1.40e-01 19 7.37e-03 6.04e+01 9.83e-124 1.26e+07 19 6.63e+05 4.19e+02 4.69e-77
Prop Alg. Error 7.08e-02 580 1.22e-04 5.41e+06 580 9.32e+03
Total 2.11e-01 599 1.80e+07 599
Columns 1.56e-01 19 8.20e-03 6.37e+01 3.70e-128 1.30e+07 19 6.83e+05 4.32e+02 1.10e-79
OA Enhn Error 7.47e-02 580 1.29e-04 5.03e+06 580 8.67e+03
Total 2.30e-01 599 1.80e+07 599
Columns 1.71e-01 19 8.99e-03 8.90e+01 7.78e—158 1.41e+07 19 7.40e+05 4.68e+02 3.32e-87
Stacking Error 5.86e—02 580 1.01e-04 3.95e+06 580 6.80e+03
Total 2.29e-01 599 1.80e+07 599

a problem. First, because the approach helps the designers to find the
optimal architecture for specific applications based on the application
requirements. In real world problems, devices are designed for specific
tasks and it arguably makes sense to specifically design them in a way
that are particularly good at performing the task while not performing
well on tasks outside the scope of the application requirements. For
example, a device designed to detect cars on the roads does not need
to perform optimally in distinguishing different types of fruits. Second,
if an application requires an architecture suitable for variety of tasks,
then the proposed algorithm is flexible enough to fulfill the need. In
such a case, one should use a wide range of data when designing the
CNNs architectures. This way, the algorithm will find an architecture
that suits all these applications. This includes not only the perfor-
mance in terms of accuracy, but also in terms of computational cost.
Many applications may require to sacrifice accuracy to achieve lower
computational/power cost.

The proposed algorithm shows success in diagnosing COVID-19
cases via chest X-ray images. This approach can be easily adopted in
hospitals for quick diagnosis of these cases. The proposed algorithm can
also be very beneficial as it provides information about how much of
the lung has been affected by the virus and the level of damage inflicted

11

on the respiratory system. This is something that cannot be diagnosed
by existing test methods. Having such information helps doctors to
provide the required care for patients that need special attention.

In this paper we distinguished two different fitness landscapes for
the problem. To the best of our knowledge, there is no work that
performs a study on the fitness landscape of this problem. Studying the
fitness landscape of problems is very useful in understanding the prob-
lem nature and is enlightening in developing algorithms. We believe
that studying the fitness landscape of the CNNs architectures should be
targeted in future work [61-63].

While the proposed algorithm shows interesting results, the perfor-
mance of these algorithms can still be further improved if they are
combined with other test systems. For example, there are algorithms
that diagnose cases via blood tests, cough signals, or other ways of test
systems. Combining the advantages of these algorithms via ensemble
approaches can result in more accurate algorithms. This remains for
future research.

While the proposed algorithm achieves better performance com-
pared to the existing algorithms, one of its limitations is the time it
requires to perform the evolutionary optimization and find the best
architecture. In traditional approaches, the best architecture is found

M.H.T. Najaran

via trial and error and with some expert knowledge about the field.
This process can be applied quicker than the proposed algorithm, so if
time is a matter and the CNN should be designed quicker, it is better to
use expert knowledge to create the CNN. However, it should be noted
that designing the CNN architecture is performed only once, and after
that the resulting CNN can perform prediction as quickly as the other
approaches.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: a convolutional
neural-network approach. IEEE Trans Neural Netw 1997;8(1):98-113.

Hu B, Lu Z, Li H, Chen Q. Convolutional neural network architectures
for matching natural language sentences. In: Ghahramani Z, Welling M,
Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information
processing systems 27. Curran Associates, Inc.; 2014, p. 2042-50.

Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Convolutional neural net-
work committees for handwritten character classification. In: 2011 International
Conference on Document Analysis and Recognition. 2011, p. 1135-9.

Liang M, Hu X. Recurrent convolutional neural network for object recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
CVPR, 2015.

Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an
overview and application in radiology. Insights Into Imaging 2018;9(4):611-29.
Sam DB, Surya S, Babu RV. Switching convolutional neural network for crowd
counting. In: 2017 IEEE conference on computer vision and pattern recognition.
CVPR, 2017, p. 4031-9.

Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep
neural networks? In: Advances in neural information processing systems. 2014,
p. 3320-8.

Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image
representations using convolutional neural networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014, p. 1717-24.
Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural
networks for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning. IEEE Trans Med Imaging 2016;35(5):1285-98.

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J Physiol 1962;160(1):106.
Rumelhart DE, Hinton GE, Williams RJ. Learning representations
back-propagating errors. Nature 1986;323(6088):533-6.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. 2014, arXiv preprint arXiv:1409.1556.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, p. 770-8.

Albelwi S, Mahmood A. A framework for designing the architectures of deep
convolutional neural networks. Entropy 2017;19(6):242.

Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and singular
value decomposition. Biol Cybernet 1988;59(4-5):291-4.

Hinton GE, Zemel RS. Autoencoders, minimum description length and Helmholtz
free energy. In: Advances in neural information processing systems. 1994, p.
3-10.

Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach
Learn Res 2012;13(1):281-305.

Rasmussen CE. Gaussian processes in machine learning. In: Summer school on
machine learning. Springer; 2003, p. 63-71.

Mockus J. On Bayesian methods for seeking the extremum. In: Optimization
techniques IFIP technical conference. Springer; 1975, p. 400-4.

Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter
optimization. In: Advances in neural information processing systems. 2011, p.
2546-54.

Zoph B, Le QV. Neural architecture search with reinforcement learning. 2016,
CoRR arXiv:1611.01578.

Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for
general algorithm configuration. In: International conference on learning and
intelligent optimization. Springer; 2011, p. 507-23.

Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for
scalable image recognition. In: 2018 IEEE/CVF conference on computer vision
and pattern recognition. 2018, p. 8697-710.

Baker B, Gupta O, Naik N, Raskar R. Designing neural network architectures
using reinforcement learning. 2016, arXiv preprint arXiv:1611.02167.

by

12

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Artificial Intelligence In Medicine 142 (2023) 102571

Chen Y, Zhu K, Zhu L, He X, Ghamisi P, Benediktsson JA. Automatic design of
convolutional neural network for hyperspectral image classification. IEEE Trans
Geosci Remote Sens 2019;57(9):7048-66.

Liu H, Simonyan K, Yang Y. DARTS: Differentiable architecture search. 2018,
CoRR arXiv:1806.09055.

Yang T-J, Chen Y-H, Sze V. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, p. 5687-95.

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Le QV, et al. Large-scale
evolution of image classifiers. 2017, CoRR arXiv:1703.01041.

Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier
architecture search. 2018, CoRR arXiv:1802.01548.

Qolomany B, Maabreh M, Al-Fuqaha A, Gupta A, Benhaddou D. Parameters
optimization of deep learning models using particle swarm optimization. In: 2017
13th international wireless communications and mobile computing conference.
IWCMC, IEEE; 2017, p. 1285-90.

Young SR, Rose DC, Karnowski TP, Lim S-H, Patton RM. Optimizing deep
learning hyper-parameters through an evolutionary algorithm. In: Proceedings of
the workshop on machine learning in high-performance computing environments.
2015, p. 1-5.

Strumberger I, Tuba E, Bacanin N, Jovanovic R, Tuba M. Convolutional neural
network architecture design by the tree growth algorithm framework. In: 2019
International joint conference on neural networks. IJCNN, IEEE; 2019, p. 1-8.
Baldominos A, Saez Y, Isasi P. Evolutionary convolutional neural networks: An
application to handwriting recognition. Neurocomputing 2018;283:38-52.
Suganuma M, Shirakawa S, Nagao T. A genetic programming approach to
designing convolutional neural network architectures. In: Proceedings of the
genetic and evolutionary computation conference. 2017, p. 497-504.

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, et al. Large-scale
evolution of image classifiers. 2017, arXiv preprint arXiv:1703.01041.

Xie L, Yuille A. Genetic cnn. In: Proceedings of the IEEE international conference
on computer vision. 2017, p. 1379-88.

Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image clas-
sifier architecture search. In: Proceedings of the Aaai conference on artificial
intelligence. 33, (01):2019, p. 4780-9.

Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. Hierarchical
representations for efficient architecture search. 2017, arXiv preprint arXiv:
1711.00436.

Junior FEF, Yen GG. Particle swarm optimization of deep neural networks
architectures for image classification. Swarm Evol Comput 2019;49:62-74.

Ma B, Li X, Xia Y, Zhang Y. Autonomous deep learning: a genetic DCNN designer
for image classification. Neurocomputing 2020;379:152-61.

Gottapu RD, Dagli CH. Efficient architecture search for deep neural networks.
Procedia Comput Sci 2020;168:19-25.

Sun Y, Xue B, Zhang M, Yen GG. A particle swarm optimization-based flexible
convolutional autoencoder for image classification. IEEE Trans Neural Netw
Learn Syst 2018;30(8):2295-309.

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. 2010, p. 249-56.

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convo-
lutional neural networks. In: Advances in neural information processing systems.
2012, p. 1097-105.

Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In:
European conference on computer vision. Springer; 2014, p. 818-33.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper
with convolutions. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, p. 1-9.

Cohen JP, Morrison P, Dao L. COVID-19 image data collection, GitHub. 2020,
arXiv:2003.11597 URL: https://github.com/ieee8023/covid-chestxray-dataset.
Rahman T, Chowdhury M, Khandakar A. COVID-19 radiography database, Kag-
gle. 2020, URL: https://www.kaggle.com/tawsifurrahman/covid19-radiography-
database/data.

Ahmed A. Pneumonia sample X-Rays, GitHub. 2020, URL: https://www.kaggle.
com/ahmedali2019/pneumonia-sample-xrays.

Polesel A, Ramponi G, Mathews VJ. Image enhancement via adaptive unsharp
masking. IEEE Trans Image Process 2000;9(3):505-10.

Gingold Y. Image stack: simple code to load and process image stacks, GitHub.
2014, URL: https://github.com/yig/imagestack.

Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders:
Explicit invariance during feature extraction. In: Icml. 2011.

Sohn K, Lee H. Learning invariant representations with local transformations.
2012, arXiv:1206.6418.

Bruna J, Mallat S. Invariant scattering Convolution Networks. IEEE Trans Pattern
Anal Mach Intell 2013;35(8):1872-86.

Chan T, Jia K, Gao S, Lu J, Zeng Z, Ma Y. PCANet: A simple deep learning base-
line for image classification? IEEE Trans Image Process 2015;24(12):5017-32.
http://dx.doi.org/10.1109/TIP.2015.2475625.

Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y. An empirical evaluation
of deep architectures on problems with many factors of variation. In: Proceedings
of the 24th international conference on machine learning. 2007, p. 473-80.

http://refhub.elsevier.com/S0933-3657(23)00085-4/sb1
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb1
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb1
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb2
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb3
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb3
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb3
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb3
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb3
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb4
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb4
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb4
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb4
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb4
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb5
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb5
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb5
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb6
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb6
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb6
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb6
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb6
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb7
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb7
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb7
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb7
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb7
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb8
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb8
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb8
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb8
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb8
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb9
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb9
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb9
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb9
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb9
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb10
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb10
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb10
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb11
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb11
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb11
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb13
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb13
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb13
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb13
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb13
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb14
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb14
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb14
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb15
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb15
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb15
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb16
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb16
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb16
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb16
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb16
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb17
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb17
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb17
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb18
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb18
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb18
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb19
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb19
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb19
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb20
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb20
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb20
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb20
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb20
http://arxiv.org/abs/1611.01578
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb22
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb22
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb22
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb22
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb22
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb23
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb23
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb23
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb23
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb23
http://arxiv.org/abs/1611.02167
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb25
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb25
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb25
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb25
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb25
http://arxiv.org/abs/1806.09055
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb27
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb27
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb27
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb27
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb27
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1802.01548
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb30
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb31
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb32
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb32
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb32
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb32
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb32
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb33
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb33
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb33
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb34
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb34
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb34
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb34
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb34
http://arxiv.org/abs/1703.01041
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb36
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb36
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb36
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb37
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb37
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb37
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb37
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb37
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb39
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb39
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb39
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb40
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb40
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb40
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb41
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb41
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb41
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb42
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb42
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb42
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb42
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb42
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb43
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb43
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb43
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb43
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb43
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb44
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb44
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb44
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb44
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb44
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb45
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb45
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb45
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb46
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb46
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb46
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb46
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb46
http://arxiv.org/abs/2003.11597
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/data
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/data
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/data
https://www.kaggle.com/ahmedali2019/pneumonia-sample-xrays
https://www.kaggle.com/ahmedali2019/pneumonia-sample-xrays
https://www.kaggle.com/ahmedali2019/pneumonia-sample-xrays
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb50
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb50
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb50
https://github.com/yig/imagestack
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb52
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb52
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb52
http://arxiv.org/abs/1206.6418
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb54
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb54
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb54
http://dx.doi.org/10.1109/TIP.2015.2475625
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb56
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb56
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb56
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb56
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb56

M.H.T. Najaran

[57]

[58]

[59]

[60]

[61]

[62]

Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer K. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. 2016,
CoRR arXiv:1602.07360.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. CVPR, 2018.

Hinton GE. A practical guide to training restricted Boltzmann machines. In:
Neural networks: Tricks of the trade. Springer; 2012, p. 599-619.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. 2016, arXiv
preprint arXiv:1603.04467.

Tayarani-N. M, Priigel-Bennett A. On the landscape of combinatorial optimization
problems. IEEE Trans Evol Comput 2014;18(3):420-34.

Tayarani-N. M-H, Priigel-Bennett A. Anatomy of the fitness landscape for dense
graph-colouring problem. Swarm Evol Comput 2015;22:47-65.

13

Artificial Intelligence In Medicine 142 (2023) 102571

[63] Prugel-Bennett A, Tayarani-Najaran M. Maximum satisfiability: Anatomy of the

fitness landscape for a hard combinatorial optimization problem. IEEE Trans Evol
Comput 2012;16(3):319-38. http://dx.doi.org/10.1109/TEVC.2011.2163638.

Mohammad- H. Tayarani- N. received his Ph.D. degree from
the University of Southampton, Southampton, U.K, in 2013.
Then he worked as research fellow at the University of
Birmingham, Birmingham, UK and University of Glasgow,
Glasgow, UK. He is currently a senior lecturer at the
University of Hertfordshire, Hatfield, UK.

http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb58
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb58
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb58
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb58
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb58
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb59
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb59
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb59
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb61
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb61
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb61
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb62
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb62
http://refhub.elsevier.com/S0933-3657(23)00085-4/sb62
http://dx.doi.org/10.1109/TEVC.2011.2163638

	A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray images
	Introduction
	Convolutional Neural Networks
	Previous Work
	CNN Architecture Optimization

	The Proposed Algorithm
	Dataset
	Data Preprocessing

	Experimental Results
	Conclusion
	Declaration of Competing Interest
	References

