163 research outputs found

    Full-scale Experimental Modal Analysis of an Arch Dam: The First Experience in Iran

    Get PDF
    Forced vibration field tests and finite-element studies were conducted on the Shahid Rajaee concrete arch dam in Northern Iran to determine the dynamic properties of the dam–reservoir–foundation system. The first forced vibration tests on the dam were performed with two different types of exciter units, with a limited maximum force, bolted on the dam crest for alternative in-phase and out-of-phase sequencing. Because of an insufficient number of recording sensors, two arrangements of sensors were used to cover sufficient points on the dam crest and one gallery during tests. Two kinds of vibration tests, on–off and frequency sweeping, were carried out on the dam. The primary natural frequencies of the coupled system for both symmetric and anti-symmetric vibration modes were approximated during on–off tests in two types of sequencing of exciters, in phase and out-of-phase, with a maximum frequency of 14 Hz. The principal forced vibration tests were performed at precise resonant frequencies based on the results of the on–off tests in which sweeping around the approximated frequencies at 0.1 Hz increments was performed. Baseline correction and suitable bandpass filtering were applied to the test records and then signal processing was carried out to compute the auto power, cross power and coherence spectra. Nine middle modes of vibration of the coupled system and corresponding damping ratios were estimated. The empirical results are compared against the results from calibrated finite-element modeling of the system using former ambient vibration tests, considering the dam–reservoir–foundation interaction effects. Good agreement is obtained between experimental and numerical results for eight middle modes of the dam–reservoir–foundation system

    A phenomenological model for electrical transport characteristics of MSM contacts based on GNS

    Get PDF
    Graphene nanoscroll, because of attractive electronic, mechanical, thermoelectric and optoelectronics properties, is a suitable candidate for transistor and sensor applications. In this research, the electrical transport characteristics of high-performance field effect transistors based on graphene nanoscroll are studied in the framework of analytical modeling. To this end, the characterization of the proposed device is investigated by applying the analytical models of carrier concentration, quantum capacitance, surface potential, threshold voltage, subthreshold slope and drain induced barrier lowering. The analytical modeling starts with deriving carrier concentration and surface potential is modeled by adopting the model of quantum capacitance. The effects of quantum capacitance, oxide thickness, channel length, doping concentration, temperature and voltage are also taken into account in the proposed analytical models. To investigate the performance of the device, the current-voltage characteristics are also determined with respect to the carrier density and its kinetic energy. According to the obtained results, the surface potential value of front gate is higher than that of back side. It is noteworthy that channel length affects the position of minimum surface potential. The surface potential increases by increasing the drain-source voltage. The minimum potential increases as the value of quantum capacitance increases. Additionally, the minimum potential is symmetric for the symmetric structure (Vfg = Vbg). In addition, the threshold voltage increases by increasing the carrier concentration, temperature and oxide thickness. It is observable that the subthreshold slope gets closer to the ideal value of 60 mV/dec as the channel length increases. As oxide thickness increases the subthreshold slope also increases. For thinner gate oxide, the gate capacitance is larger while the gate has better control over the channel. The analytical results demonstrate a rational agreement with existing data in terms of trends and values

    Investigating the electrical characteristics of a single electron transistor utilizing graphene nanoribbon as the island

    Get PDF
    Single electron transistor (SET) is a fast device with promising features in nanotechnology. Its operation speed depends on the island material, so a carbon based material such as graphene nanoribbon (GNR) can be a suitable candidate for using in SET island. The GNR band gap which depends on its width, has a direct impact on the coulomb blockade and SET current. In this research, current–voltage characteristic for the SET utilizing GNR in its island is modelled. The comparison study shows the impact of GNR width and length on the SET current. Furthermore SET quantum capacitance is modeled and effect of GNR width and temperature on the quantum capacitance are investigated

    Single electron transistor scheme based on multiple quantum dot islands: carbon nanotube and fullerene

    Get PDF
    Single electron transistor (SET) is a nano dimension device that is offered by technology to solve the problem of aggressive scaling in traditional transistors. Its operation speed depends on carrier mobility of its quantum dot. In this research, fullerene (C60) and carbon nanotube (CNT) are utilized as materials of quantum dots in SET. Two SETs with different multiple quantum dots as C60-CNT-C60 and CNT-C60-CNT are modeled and analyzed. The comparison study shows that total length of quantum dots as fullerene diameter and CNT length have indirect effect on its current. Moreover increasing temperature decreases its current while rising of the gate voltage increases its current. In other words, quantum dot length, temperature and gate voltage are parameters which can control SET operation. Furthermore two SETs are simulated and their stability diagrams are analyzed. The simulation results show that C60-CNT-C60 SET has lower coulomb blockade and also it has more reliability and faster operation than CNT-C60-CNT SET

    Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor

    Get PDF
    Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreemen

    Channel conductance of ABA stacking trilayer graphene nanoribbon field-effect transistor

    Get PDF
    In this paper, our focus is on ABA trilayer graphene nanoribbon (TGN), in which the middle layer is horizontally shifted from the top and bottom layers. The conductance model of TGN as a FET channel is presented based on Landauer formula. Besides the good reported agreement with experimental study lending support to our model, the presented model demonstrates that minimum conductivity increases dramatically by temperature. It also draws parallels between TGN and bilayer graphene nanoribbon, in which similar thermal behavior is observed. Maxwell-Boltzmann approximation is employed to form the conductance of TGN near the neutrality point. Analytical model in degenerate regime in comparison with reported data proves that TGN-based transistor will operate in degenerate regime like what we expect in conventional semiconductors. Moreover, our model confirms that in similar condition, the conductivity of TGN is less than bilayer graphene nanoribbon as reported in some experiments

    Total antioxidant capacity of saliva and dental caries

    Get PDF
    Objective: Dental caries is one of the most common infectious diseases worldwide. Saliva has many functions in the oral cavity and is the first line defense against dental caries. Oxidative stress can affect initiation and progression of many inflammatory and infectious diseases such as dental caries. Thus the aim of this study was to evaluate the relationship between total antioxidant capacity (TAC) of saliva and dental caries. Study D esign: 100 healthy high school students (50 female and 50 male) with age range of 15 -17 years were randomly selected, divided to four groups. Unstimulated whole saliva specimens were collected at the morning. TAC of saliva was evaluated by spectrophotometric assay. Statistical comparisons were performed using Student's t-test, by SPSS 13. Results: The level of TAC was significantly higher in the saliva of caries active group relative to the caries free subjects. Statistical analysis for male and female groups showed a statistically significant reduction of TAC level in female group. Conclusion: TAC was higher in caries active group. Thus this result showed that total antioxidant capacity may influence in dental caries and activity can be measured by salivary factors and this may be helpful in preventive dentistry

    Schemes for single electron transistor based on double quantum dot islands utilizing a graphene nanoscroll, carbon nanotube and fullerene

    Get PDF
    The single electron transistor (SET) is a nanoscale switching device with a simple equivalent circuit. It can work very fast as it is based on the tunneling of single electrons. Its nanostructure contains a quantum dot island whose material impacts on the device operation. Carbon allotropes such as fullerene (C60), carbon nanotubes (CNTs) and graphene nanoscrolls (GNSs) can be utilized as the quantum dot island in SETs. In this study, multiple quantum dot islands such as GNS-CNT and GNS-C60 are utilized in SET devices. The currents of two counterpart devices are modeled and analyzed. The impacts of important parameters such as temperature and applied gate voltage on the current of two SETs are investigated using proposed mathematical models. Moreover, the impacts of CNT length, fullerene diameter, GNS length, and GNS spiral length and number of turns on the SET’s current are explored. Additionally, the Coulomb blockade ranges (CB) of the two SETs are compared. The results reveal that the GNS-CNT SET has a lower Coulomb blockade range and a higher current than the GNS-C60 SET. Their charge stability diagrams indicate that the GNS-CNT SET has smaller Coulomb diamond areas, zero-current regions, and zero-conductance regions than the GNS-C60 SET
    corecore