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The carriers in a carbon nanotube (CNT), like in any quasi-1-dimensional (Q1D) nanostructure, have analog energy spectrum
only in the quasifree direction; while the other two Cartesian directions are quantum-confined leading to a digital (quantized)
energy spectrum. We report the salient features of the mobility and saturation velocity controlling the charge transport in a
semiconducting single-walled CNT (SWCNT) channel. The ultimate drift velocity in SWCNT due to the high-electric-field
streaming is based on the asymmetrical distribution function that converts randomness in zero-field to a stream-lined one in
a very high electric field. Specifically, we show that a higher mobility in an SWCNT does not necessarily lead to a higher saturation
velocity that is limited by the mean intrinsic velocity depending upon the band parameters. The intrinsic velocity is found
to be appropriate thermal velocity in the nondegenerate regime, increasing with the temperature, but independent of carrier
concentration. However, this intrinsic velocity is the Fermi velocity that is independent of temperature, but depends strongly on
carrier concentration. The velocity that saturates in a high electric field can be lower than the intrinsic velocity due to onset of a
quantum emission. In an SWCNT, the mobility may also become ballistic if the length of the channel is comparable or less than
the mean free path.

Copyright © 2008 Mohammad Taghi Ahmadi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. INTRODUCTION

Due to the chemical stability and perfection of the carbon
nanotube (CNT) structure, carrier mobility is not affected
by processing and roughness scattering as it is in the con-
ventional semiconducting channel. The fact that there are no
dangling bond states at the surface of CNT allows for a wide
choice of gate insulators in designing a field effect transistor
(FET). It is not surprising that the CN'Ts are being explored as
viable candidates for high-speed applications. The growing
demand for higher computing power, smaller size, and lower
power consumption of integrated circuits leads to a pressing
need to downscale semiconductor components leading to
novel new nanostructures [1]. CNTs, originally discovered
by Iijima [2], have opened a number of applications. Some
of these applications are building block of nano-VLSI circuit
design, including reliable interconnects. The circuits so
designed are shown to be mechanically rigid and able to

carry high current densities. However, almost all synthetic
methods result in bundles of CNTs rather than a well-
organized strand requiring a complicated chemical proce-
dure in separating individual single-walled CNT (SWCNT)
that almost certainly would introduce damages of varying
degrees. Peng et al. [3] have directly obtained soot from a
chemical vapor deposition chamber. By fixing one end of
the soot, a CNT (in their case a multiwall CNT) was drawn
by using scanning electron microscope (SEM) nanoprobe.
Electronic transport in these CNTs is in its infancy and needs
to be investigated in order to develop novel application, for
example, making a CNT FET. This is the motivation for this
work.

The most nanoelectronic applications look for high-
speed CNTs that are well known to have very high mobilities.
The low scattering probability in CNTs is responsible for
superior mobilities [4]. However, the work of Ahmadi et al.
in a quantum nanowire (NW) has shown that the ultimate
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FIGURE 1: A prototype single-walled carbon nanotube with length
L > Ap, de Broglie wavelength, and d = 2R < Ap.

saturation velocity does not sensitively depend on the low-
field mobility. It is, therefore, of interest for us to find
the ultimate velocity that may exist in an SWCNT. This
velocity will necessarily depend on the band structure, the
temperature, and the degeneracy level. The carrier drift is
the velocity with which a carrier (electron or hole) can
propagate through the length of the device encountering
collisions on the way and starting its journey fresh on facing
a collision. The higher mobility may bring an electron closer
to saturation as a high electric field is encountered, but needs
not to elevate the saturation velocity [5]. The reduction
in conducting channel length of the device results in a
reduced transit-time-delay and hence enhanced operational
frequency. However, if the length is made smaller than the
mean free path, the mobility may also become ballistic, free
from randomizing scattering events.

In the following sections, the formalism is developed to
study the velocity response to the electric field in an SWCNT
as shown in Figure 1. The radius that is a few nanometers
in size is comparable to de Broglie wavelength while length
can vary from cm to ym range. This makes CNT a quasi-1-
dimensional (Q1D) entity.

2. Q1D-CNT NANOSTRUCTURE

A single-walled carbon nanotube (SWCNT) of Figure 1 is a
sheet of graphite (called graphene) rolled up into a cylinder
with diameter of the order of a nanometer. For an electron on
the surface of the CNT, it is certain to have wave properties
as the diameter is comparable to de Broglie wavelength
Ap = h/p, where p is the carrier momentum. The tube
diameter must necessarily contain integer (1) number of
de Broglie waves for an electron to form a standing wave
pattern around the rim of the CNT, thereby giving a resonant
condition as the returning wave to the same point reinforces
the electron motion. This constructive interference, leading
to the resonant behavior, gives
h
2ntR=n—, n=1,2,3.... (1)
p

The quantized energy that depends on (1) relies on the
relationship between energy and momentum that can be
linear or quadratic depending on the chirality of the CNT. In
order to understand the fundamentals of transport param-
eters without getting into the bandstructure complexities,

we will assume quadratic relationship as in a nanowire [6]
for transverse energy. In this approximation, we consider
transverse effective mass m* to be isotropic that depends on
the diameter of the CNT [7] but independent of energy or
momentum. The transverse energy of the CNT is given by

n2h?
2m*R2’

E,,= n=123.... (2)
In the longitudinal direction, the electron waves are prop-
agating that result in the charge transport. With unaltered
conduction band at E, the transverse energy in y and z
directions is digital in nature as given by (2), but is of
continuous analog-type in the longitudinal direction (taken
to be x axis). The total energy is given by [8]

fi2k? h2k?
E=Eco+51+2mjf=Ec+2mj:. (3)

The chiral vector C specifies the direction of the roll-up:
E,’: na; + ma, = (n,m). (4)

Here, al and 52 are the basis vectors of the lattice. In

the (n,m) notation for C, when (n — m) is a multiple
of 3 the nanotube is metallic, the vectors (n,0) or (0,m)
denote zigzag CNTs, whereas the vectors (n,m) correspond
to chiral CNTs. In the semiconducting mode of CNT, as in
(5,3) chirality, the band structure can be manipulated to be
parabolic in the semiconducting mode of operation. Due to
the approximation for the graphene band structure near the
Fermi point, the E(k) relation of the CNT is

- 3acc 7 t3ac-
E(k) = 75 [kew| = 55 R 4k (9)

where k., is the wave vector component along the circular
direction, which is quantized by the periodic boundary
condition, and k; is the wave vector along the length of the
CNT. Also, k., is minimum for the lowest band of CNT.
The minimum value for k., is zero for the metallic CNT.
Therefore, the density of states (DOS) is given by

_ 8
3ac_ctr ’

D(E) = D, (6)

where ac.c = 1.42A is the carbon-carbon (C—-C) bond
length, t = 2.7eV [9, 10] is the nearest neighbor C—C tight
binding overlap energy, and d is the diameter of the carbon
nanotube, taken to be that of (5, 3) chirality.

The band structure is indeed nonparabolic. However, for
low-lying states in the vicinity of k = 0, where most electrons
reside, the band structure is approximately parabolic, as
shown in Figure 2. For the semiconducting CNT, the focus
of our study, the minimum magnitude of the circumferential
wave vector is k., = 2/3d, where d = 2R is the diameter
of the CNT. By substituting this equation into the E(k)
approximation for the semiconducting CNT, we get

2
E(k):iﬁa% (%) k2. )
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FIGURe 2: The parabolic band structure of CNT in the vicinity
of energy minimum (k = 0) with conduction and valence bands
separated by the first bandgap Eg.
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F1Gure 3: The flat-band diagram for CNT in equilibrium.

Near the band minimum, all metallic and semiconducting
annotates are equivalent. According to (5), the conduction
and valence bands of a semiconducting CNT are mirror
image of each other and the first band gap is Egs =
2ac_ct/d = 0.8(ev)/d(nm).

In this description, the energy E(k) and band gap
in semiconducting CNT are function of diameter. There
are higher-order subbands that may be populated as well.
However, (5) when k,d < 1 reduces to

e (T
BR)= J\1+ (57) = S 1+ k), ®)

where Eg is the CNT bandgap and d is the diameter. When
expanded to the first order, the E-k relation becomes as in
(3) with E., = Eg/2. With this modification, m* in (3) is the

longitudinal effective mass that depends on the diameter of
the tube:

m*  4h*  0.08 nm
Mo B 9ac_cdt B d (nm) '

)

In one-dimensional carbon nanotube using (5) for the
gradient of k, definition of density of states DOS, including
effect of the electron spin, leads to the following equation
which is similar to that in Q1D nanowire [11]:

- An, _i &>_1/2<2m*>1/2
DOS = AEL, ~ 27 (E 2 h2 ’ (10)

As in any Q1D, DOS diverges at the bandedge E = E, but
drops as square root of the kinetic energy Ex = E — E..

3. ENERGY AND VELOCITY DISTRIBUTION

The distribution function of the energy Ej is given by the
Fermi-Dirac distribution function:

1
f(Ek) = e(Ek*EFl)/kBTJr- 1> (11)

where Ep; is the Fermi energy that is equivalent to chemical
potential and describes the degeneracy nature of the electron
concentration. As shown in Figure 3, the Fermi energy level
runs parallel to the conduction band edge. The Fermi level is
in the bandgap for the nondegenerate carrier concentration
and within the conduction (or valence) band for degenerate
carrier (electron or hole) concentration. In the absence of
electric field, the bands are flat. The velocity vectors for
the randomly moving stochastic electrons cancel each other
giving net drift equal to zero, as shown in the flat band
diagram of Figure 3. In a homogenous CNT, equal numbers
from left and right are entering the free path.

This random motion does not mean that the magnitude
of a single vector (that we call the intrinsic velocity) is zero.
The average of this intrinsic velocity v;, as calculated from
the average value of |v| with the distribution function of (11)
multiplied by the DOS of (10), is given by

ja(l/ll)

= — 12
Vi1 Vth1 j_]/z (’11) ( )
with
- 1 © xi
Ji(n) = I+ I)JO pr=n 1dx, (13)
1 1 [2kgT
Vth1 = ﬁvth = ﬁ mB* . (14)

The normalized Fermi energy n = (Ep — E.)/kpT is
calculated from the carrier concentration n; per unit length
of the CNT as follows:

n1 = NaJ_12(m1) (15)

with

Zm*kBT 12
Nd—( T ) : (16)
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FiGure 4: Intrinsic velocity versus temperature for (5,3) CNT for
three concentration values. Also shown is the nondegenerate limit.

Here, J;(#) is the Fermi-Dirac integral of order j and I'(j+1)
is a Gamma function of order j + 1. Its value for an integer j
isI'(j+1) = jI(j) = jl. Thevalue of T for j = 0is I'(1) = 1
and for j = —1/2is I'(1/2) = /m. The Fermi integral with
Maxwellian approximation is always an exponential for all
values of j and is given by [12]

J;(n) = " (nondegenerate). (17)

In the strongly degenerate regime, the Fermi integral trans-
forms to
1 1 j+1 n j+l

3j(n) = Tj+1)j+1 T(j+2)

(deg).  (18)

The degeneracy of the carriers sets in at n; = N = 2.0 X
10 m~! for Q1D-CNT with chirality (5,3) (m* = 0.189 m,)
[13]. The carriers are nondegenerate if the concentration n,
is less than this value and degenerate if it is larger than this
value. The threshold for the onset of degeneracy will change
as chirality changes. The effective mass is m* = 0.099 m,
[13] for (9,2) chirality, and degeneracy sets in at n; = 1.46 X
10°m-1.

Figure 4 indicates the ultimate velocity as a function of
temperature. Also shown is the graph for nondegenerate
approximation. The velocity for low carrier concentration
follows T"? behavior independent of carrier concentration.
As concentration is increased to embrace degenerate domain,
the intrinsic velocity tends to be independent of temperature,
but depends strongly on carrier concentration. The nonde-
generate limit of intrinsic velocity v;; is vin of (14). Figure 5
shows the graph of ultimate intrinsic velocity as a function
of carrier concentration for three temperatures T = 4.2K
(liquid helium), 77K (liquid nitrogen), and 300K (room
temperature). As expected, at low temperature, carriers
follow the degenerate statistics and hence their velocity is

v; (10° m/s)

n(m1)
--- T=300K — T =42K
-~ T=77x Degenerate
FIGURE 5: Velocity versus carrier concentration for T = 4.2K

(liquid helium), T' = 77K (liquid nitrogen), and T' = 300 K (room
temperature). The 4.2 K curve is closer to the degenerate limit.

limited by appropriate average of the Fermi velocity that is a
function of carrier concentration. In the degenerate limit, the
intrinsic velocity is only the function of carrier concentration
and is independent of temperature:

VilDeg = %(”1”)- (19)
Equation (19) shows that the intrinsic velocity is a linear
function of the linear carrier concentration, as shown in
Figure 5. However, it may be affected by the onset of
a quantum emission. For low carrier concentrations, the
velocity is independent of carrier concentration as the graphs
are flat. Most published works tend to use thermal velocity
for modeling as it is independent of carrier concentration.

4. HIGH-FIELD DISTRIBUTION

Arora [14] modified the equilibrium distribution function
of (11) by replacing Ep; (the chemical potential) with the

electrochemical potential Ep; +g £ - 0. Here, ¢ is the applied
electric field, g is the electronic charge, and ¢ the mean
free path during which carriers are collision free or ballistic.
Arora’s distribution function is thus given by
1
e(Ek—EF1+qg.z)/k3T + 1.

f(Ex) = (20)

This distribution has simpler interpretation as given in the
tilted-band diagram of Figure 6. A channel of CNT can be
thought as a series of ballistic resistors each of length ¢,
where the ends of each free path can be considered as virtual
contacts with different quasi-Fermi levels separated in energy

by ¢ € - ¢. It is clear that this behavior is compatible
with the transport regime in a single ballistic channel where
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FIGURE 6: Partial stream-lining of electron motion on a tilted band
diagram in an electric field.

local quasi-Fermi level can be defined on both ends for the
source and drain contacts. This behavior is understandable
if we consider the widely diffused interpretation of inelastic
scattering represented by the Biittiker approach of virtual
thermalizing probes [15], which can be used to describe
transport in any regime. Within this approach, carriers are
injected into a “virtual” reservoir where they are thermalized
and start their ballistic journey for the next free path. The
carriers starting from the left at Fermi potential Ep; end the

free-path voyage with Ep; — g €¢. Those starting from right
end of the free path end the voyage with the electrochemical

potential Er; + ¢ £¢. These are the two quasi-Fermi levels.
The current flow is due to the gradient of the Fermi energy
Er; (x) in the presence of an electric field. Because of this
asymmetry in the distribution of electrons, the electrons in

Figure 6 tend to drift opposite to the electric field € applied
in the negative x-direction (right to left).

In an extremely large electric field, virtually all the
electrons are traveling in the positive x-direction (opposite to
the electric field), as shown in Figure 7. This is what is meant
by conversion of otherwise completely random motion into
a stream-lined one with ultimate velocity per electron equal
to v;. Hence, the ultimate velocity is ballistic independent
of scattering interactions. This interpretation is consistent
with the laws of quantum mechanic where the propagating
electron waves in the direction of the electric field find it
hard to surmount the infinite potential barrier and hence are
reflected back elastically with the same velocity.

The ballistic motion in a free path may be interrupted
by the onset of a quantum emission of energy Aw,. This
quantum may be an optical phonon or a photon or any
digital energy difference between the quantized energy levels
with or without external stimulation present. The mean-free
path with the emission of a quantum of energy is related to
¢y (zero-field mean free path) by an expression [16]

£ =01 — e E/ab] = gy[1 — e te/0] (21)

USRI

I TTTTTT 1T

Figure 7: Conversion of random velocity vectors to the stream-
lined one in an infinite electric field.

with

qebq = Eq = (No + 1) ficwo,

1 (22)

No = ehwo/ksT — 1"

Here, (N, + 1) gives the probability of a quantum emission.
N, is the Bose-Einstein distribution function determining
the probability of quantum emission. The degraded mean
free path ¢ is now smaller than the low-field mean free path
€. Also, € = ¢, in the ohmic low-field regime as expected.
In high electric field, £ = £q. The inelastic scattering length
during which a quantum is emitted is given by

_Eo
g = ot (23)

Obviously, £ = o in zero electric field and will not modify
the traditional scattering described by mean free path £,
as ¢o > ¢y. The low-field mobility and associated drift
motion are, therefore, scattering-limited. The effect of all
possible scattering interactions in the ohmic limit is buried
in the mean free path €. The nature of the quantum emitted
depends on the experimental set up and the presence of
external stimulations as well as the spacing between the
digitized energies. This quantum may be in the form of a
phonon, photon, or the spacing with the quantized energy
of the two lowest levels. For the quantum emission to
be initiated by transition to higher quantum state with
subsequent emission to the lower state, the quantum energy
hw, = AE, 1, is a function of radius of the CNT:

3h?

hw, = TR

(24)

This dependence of the quantum on the radius or diameter
of the CNT may give an important clue about the CNT
chirality and could be used for characterization of the CNT.
The number of electrons in each direction is proportional
to e*2¢/ksT (+ sign is for antiparallel and — sign is for parallel
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FiGcure 8: Normalized velocity-field characteristics for an SWCNT
as predicted from the theory and compared with empirical models.

direction). The number of antiparallel electrons overwhelms
due to rising exponential and those in parallel direction
decrease to virtually zero due to the decaying exponential.
The net fraction F,, of the stream-lined electrons is then
given by

eqef/kBT _ e—qef/kBT el
Font = - —tanh [ 1), (29)
eet/ksT  o—qet/ksT kgT

When the net velocity response to the electric filed for
the fraction of electrons drifting in the opposite (antiparallel)
direction of the electric field is considered, the drift response
is obtained as [17]

&t &
V4 = Vet tanh (ZB—T> = Vg tanh (gc) (26)
with
kT 'V,
=" = @7)

where &, is the critical electric field for the onset of nonohmic
behavior. Also, V; = kpT/q is the thermal voltage whose
value at the room temperature is 0.0259 V.

Figure 8 gives the normalized plot of v4/vsy Versus €/e..
Also, vt = vii when quantum emitted has energy much
higher than the thermal energy (fw, > kgT'). The saturation
velocity ve = vi1 tanh(hiw,/kpT) when hw, is comparable to
the thermal energy kg T. Figure 8 shows the comparison with
the empirical equation normally employed in the simulation
programs:

Vg = vsat[ ! (28)

1+ (8/8.)"""

where y is a parameter. A wide variety of parameters are
quoted in the published literature. Greenberg and del Alamo

[18] give convincing evidence from measurements on a 5 ym
InGaAs resistive channel that y = 2.8. Other values that are
commonly quoted are y = 2 for electrons and y = 1 for holes.
The discrepancy arises from the fact that it is impossible
to measure directly the saturation velocity that requires an
infinite electric field. No device is able to sustain such a
high electric field. The ultimate saturation velocity then can
be obtained only indirectly. Normally, the highest measured
drift velocity is ascribed to be the saturation velocity which
is always lower than the actual saturation velocity. The plots
differ only at the intermediate values of the electric field.

In the low-field limit, velocity-field graph is linear from
which ohmic mobility can be obtained. Chai et al. [19]
have demonstrated transport of energetic electrons through
aligned tubes with lengths of 0.7-3 mm. These developments
open the possibility of ballistic mobility as suggested by
Wang and Lundstrom [20] and Shur [21]. In fact, Mugnaini
and Iannaccone [22, 23] have done a study of transport
ranging from drift-diffusion to ballistic. Their model is also
applicable to nanowires and CNTs which is similar to the
Biittiker approach to dissipative transport [15]. In principle,
our formalism is very similar to that of Mugnaini and
Tannaccone. In all these works, analytical results obtained for
nano-MOSFET are consistent with that for ballistic nanowire
transistors [5, 6] and also for the CNT nanostructures
reported here. In this scenario, generic resistive channel of
a CNT can be described as a series of resistive channels
each with a finite scattering length £. Since L can be as low
as 0.7 ym that can be lower than the mean free path in a
CNT because of extremely high mobility, it is worthwhile to
evaluate how the mobility will change in a ballistic channel
with L < ¢. This relation between the mobility, the mean
free path ¢, and the channel length L is expected to have
deeper consequences on the understanding of transport in
nanostructured devices.

The long-channel mobility y., as obtained from low-field
approximation of (26) is given by

2
q¢ Vih
> = 3 > 29
m*v,, Vi 2Vsat (29)

Yoo =

where v,, is the mobility velocity that is a combination of
thermal hop on thermalization and v that arises in the
middle of the free path. In a short-channel CNT, even the
mobility may become ballistic. The length-limited ballistic
mobility y; can be obtained similar to the technique used
for the scattering length for the emission [11] of a quantum
and is obtained as

L = poo (1 — %), (30)

In the limit that the length L of the CNT is smaller than
the mean free path, the mobility will also become ballistic
replacing mean free path ¢ in (30) with L. This gives ballistic
mobility:
_ 4L
yB = m*vm . (31)
Now the mobility is limited by only the length of the

channel and ballistic intrinsic velocity that is a function of
temperature and carrier concentration.
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FIGURE 9: Normalized length-limited mobility to that in an infinite
sample versus normalized length of the CNT to that of the mean
free path in the CNT.

Figure 9 gives the normalized plot of y1/pe versus L/€. It
is clear from the graph that the relative mobility approaches
unity in the long-channel limit L > ¢. However, in the
short channel limit (L < ¢), the relative mobility is a linear
function of length of the CNT.

5. CONCLUSION

As the scaling of devices continues and new nanostructures
like CNT are discovered and exploited for experimentation,
more challenges as well as opportunities appear to extend
the vision encountered in the International Technology
Roadmap for Semiconductors [24]. CNT devices have
attracted a lot of attention because of their ideal electronic
properties. Both p- and n-type CNT-FET have been fabri-
cated and have exhibited promising characteristics. However,
the device physics and transport mechanisms of such devices
are not yet fully understood. The results presented here will
enhance the efforts that have been put on modeling CNT-
FETs. Nonequilibrium Green’s function approach [7] is too
cumbersome to understand the physical processes control-
ling the transport in Q1D nanostructure. The developed
paradigm provides simple intuitive description of the Q1D
device physics that is easily implementable.

Starting from a model for ballistic one-dimensional
FET model and adopting the Biittiker probes interpretation
of inelastic scattering, we have shown that the case of
intermediate transport between fully ballistic transport and
drift-diffusion transport can be described by the series of
an equivalent drift-diffusion minichannels with a ballistic
transport, consistently with the earlier results obtained
in the ohmic domain [25-28]. Therefore, this compact
macromodel can be considered an adequate description of
transport in nanoscaled CNT. In fact, our model embraces
virtually all nanostructures. In the presence of a magnetic
field [26], the spiraled path of a carrier will have similar
transport mechanism as pointed out here.

The asymmetrical distribution function reported here
is a very valuable tool for studying quantum transport in

nanostructures. This distribution function takes into account
the asymmetrical distribution of drifting electrons or holes
in an electric field. This distribution function transforms
the random motion of electrons into a stream-lined one
that gives the ultimate saturation velocity that is a function
of temperature in nondegenerate regime and a function of
carrier concentration in the degenerate regime. The ultimate
drift velocity is found to be appropriate thermal velocity for
nondegenerately doped CNTs. However, the ultimate drift
velocity is the Fermi velocity for degenerately-doped Q1D
CNTs. The inclusion of quantum emission for a given sample
may further highlight the fundamental physical processes
that are present. We also show the insensitivity of the
saturation velocity on ohmic mobility that is scattering-
limited. Even for the ohmic mobility, we have extended the
vision to embrace ballistic mobility that will be independent
of scattering when the channel length is smaller than the
scattering-dependent mean free path.

It is our hope that these results will be liberally utilized
for modeling, simulations, characterization, and extraction
of device parameters without ambiguity.
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