18 research outputs found

    Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Get PDF
    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr−1 to 240 000 t yr−1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial,GHGemissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached

    Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production

    Get PDF
    Life cycle environmental performance of lignocellulosic ethanol produced through different production pathways and having different co-products has rarely been reported in the literature, with most studies focusing on a single pre-treatment and single co-product (electricity). The aim of this paper is to understand the life cycle energy use and greenhouse gas (GHG) emissions implications of alternative pre-treatment technologies (dilute acid hydrolysis, ammonia fiber expansion and autohydrolysis) and co-products (electricity, pellet, protein and xylitol) through developing a consistent life cycle framework for ethanol production from corn stover. Results show that the choices of pre-treatment technology and co-product(s) can impact ethanol yield, life cycle energy use and GHG emissions. Dilute acid pathways generally exhibit higher ethanol yields (20 to 25%) and lower net total energy use (15 to 25%) than the autohydrolysis and ammonia fiber expansion pathways. Similar GHG emissions are found for the pre-treatment technologies when producing the same co-product. Xylitol co-production diverts xylose from ethanol production and results in the lowest ethanol yield (200 litres per dry t of stover). Compared to producing only electricity as a co-product, the co-production of pellets and xylitol decreases life cycle GHG emissions associated with the ethanol, while protein production increases emissions. The life cycle GHG emissions of blended ethanol fuel (85% denatured ethanol by volume) range from -38.5 to 37.2 g CO2eq/MJ of fuel produced, reducing emissions by 61% to 141% relative to gasoline. All ethanol pathways result in major reductions of fossil and petroleum energy use relative to gasoline, at least 47% and 67%, respectively. Pathways with electricity as the sole co-product use the least fossil energy All ethanol pathways studied meet the USA Energy Information and Security Act requirement of a 60% reduction in GHG emissions compared to gasoline for classification as a cellulosic biofuel; however, greater reductions are achievable through strategic selection of co-products

    Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Get PDF
    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr−1 to 240 000 t yr−1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial,GHGemissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached

    Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol

    Get PDF
    This paper examines impacts of regional factors affecting biomass and process input supply chains and ongoing technology development on the life cycle greenhouse gas (GHG) emissions of ethanol production from corn stover in the U.S. Corn stover supply results in GHG emissions from -6 gCO2eq./MJ ethanol (Macon County, Missouri) to 13 gCO2eq./MJ ethanol (Hardin County, Iowa), reflecting location-specific soil carbon and N2O emissions responses to stover removal. Biorefinery emissions based on the 2011 National Renewable Energy Laboratory (NREL) process model are the single greatest emissions source (18 gCO2eq./MJ ethanol) and are approximately double those assessed for the 2002 NREL design model, due primarily to the inclusion of GHG-intensive inputs (caustic, ammonia, glucose). Energy demands of on-site enzyme production included in the 2011 design contribute to reducing the electricity co-product and associated emissions credit, which is also dependent on the GHG-intensity of regional electricity supply. Life cycle emissions vary between 1.5 and 22 gCO2eq./MJ ethanol (2011 design) depending on production location (98% to 77% reduction vs. gasoline). Using system expansion for co-product allocation, ethanol production in studied locations meet the Energy Independence and Security Act emissions requirements for cellulosic biofuels; however, regional factors and on-going technology developments significantly influence these results

    Protective Effect of Encapsulation in Fermentation of Limonene-contained Media and Orange Peel Hydrolyzate

    No full text
    This work deals with the application of encapsulation technology to eliminateinhibition by D-limonene in fermentation of orange wastes to ethanol. Orange peel wasenzymatically hydrolyzed with cellulase and pectinase. However, fermentation of thereleased sugars in this hydrolyzate by freely suspended S. cerevisiae failed due to inhibitionby limonene. On the other hand, encapsulation of S. cerevisiae in alginate membranes wasa powerful tool to overcome the negative effects of limonene. The encapsulated cells wereable to ferment the orange peel hydrolyzate in 7 h, and produce ethanol with a yield of 0.44g/g fermentable sugars. Cultivation of the encapsulated yeast in defined medium wassuccessful, even in the presence of 1.5% (v/v) limonene. The capsules’ membranes wereselectively permeable to the sugars and the other nutrients, but not limonene. While1% (v/v) limonene was present in the culture, its concentration inside the capsules was notmore than 0.054% (v/v)

    Citrus Waste Biorefinery : Process Development, Simulation and Economic Analysis

    No full text
    The production of ethanol and other sustainable products including methane, limonene and pectin from citrus wastes (CWs) was studied in the present thesis. In the first part of the work, the CWs were hydrolyzed using enzymes – pectinase, cellulase and β-glucosidase – and the hydrolyzate was fermented using encapsulated yeasts in the presence of the inhibitor compound ‘limonene’. However, the application of encapsulated cells may be hampered by the high price of encapsulation, enzymes and the low stability of capsules’ membrane at high shear stresses. Therefore, a process based on dilute-acid hydrolysis of CWs was developed. The limonene of the CWs was effectively removed through flashing of the hydrolyzate into an expansion tank. The sugars present in the hydrolyzate were converted to ethanol using a flocculating yeast strain. Then ethanol was distilled and the stillage and the remaining solid materials of the hydrolyzed CWs were anaerobically digested to obtain methane. The soluble pectin content of hydrolyzate can be precipitated using the produced ethanol. One ton of CWs with 20% dry weight resulted in 39.64 l ethanol, 45 m3 methane, 8.9 l limonene, and 38.8 kg pectin. The feasibility of the process depends on the transportation cost and the capacity of CW. For example, the total cost of ethanol with a capacity of 100,000 tons CW/year was 0.91 USD/L, assuming 10 USD/ton handling and transportation cost of CW to the plant. Changing the plant capacity from 25,000 to 400,000 tons CW per year results in reducing ethanol costs from 2.55 to 0.46 USD/L in an economically feasible process. Since this process employs a flocculating yeast strain, the major concern in design of the bioreactor is the sedimentation of yeast flocs. The size of flocs is a function of sugar concentration, time and flow. A CFD model of bioreactor was developed to predict the sedimentation of flocs and the effect of flow on distribution of flocs. The CFD model predicted that the flocs sediment when they are larger than 180 micrometer. The developed CFD model can be used in design and scale-up of the bioreactor. For the plants with low CW capacity, a steam explosion process was employed to eliminate limonene and the treated CW was used in a digestion plant to produce methane. The required cost of this pretreatment was about 0.90 million dollars for 10,000 tons/year of CWs.Sponsorship:Sparbankstiftelsen Sjuhärad, Kommunalförbundet i Sjuhärad, Brämhults juice AB</p

    Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products

    No full text
    Process design and economic analysis of a biorefinery for the treatment of citrus wastes (CW) at different capacities was carried out. The CW is hydrolyzed using dilute sulfuric acid and then further processed to produce limonene, ethanol and biogas. The total cost of ethanol for base case process with 100,000 tons/year CW capacity was calculated as 0.91 USD/L, assuming 10 USD/ton handling and transportation cost of CW to the plant. However, this price is sensitive to the plant capacity. With constant price of methane and limonene, changing the plant capacity from 25,000 to 400,000 tons CW per year results in reducing ethanol costs from 2.55 to 0.46 USD/L in an economically feasible process. In addition, the ethanol production cost is sensitive to the transportation cost of CW. Increasing this cost from 10 to 30 USD/ton for the base case results in increasing the ethanol costs from 0.91 to 1.42 USD/L

    Production of biofuels, limonene and pectin from citrus wastes

    No full text
    Production of ethanol, biogas, pectin and limonene from citrus wastes (CWs) by an integrated process was investigated. CWs were hydrolyzed by dilute-acid process in a pilot plant reactor equipped with an explosive drainage. Hydrolysis variables including temperature and residence time were optimized by applying a central composite rotatable experimental design (CCRD). The best sugar yield (0.41 g/g of the total dry CWs) was obtained by dilute-acid hydrolysis at 150 degrees C and 6 min residence time. At this condition, high solubilization of pectin present in the CWs was obtained, and 77.6% of total pectin content of CWs could be recovered by solvent recovery. Degree of esterification and ash content of produced pectin were 63.7% and 4.23%, respectively. In addition, the limonene of the CWs was effectively removed through flashing of the hydrolyzates into an expansion tank. The sugars present in the hydrolyzates were converted to ethanol using baker's yeast, while an ethanol yield of 0.43 g/g of the fermentable sugars was obtained. Then, the stillage and the remaining solid materials of the hydrolyzed CWs were anaerobically digested to obtain biogas. In summary, one ton of CWs with 20% dry weight resulted in 39.641 ethanol, 45 m(3) methane, 8.91 limonene, and 38.8 kg pectin

    The Effect of Electrospinning Parameters on Piezoelectric PVDF-TrFE Nanofibers: Experimental and Simulation Study

    No full text
    Polyvinylidene fluoride and its copolymers can be used as active materials for energy harvesting and environmental sensing. Energy harvesting is one of the most recent research techniques for producing stable electrical energy from mechanical sources. Polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) is applicable for sensors and self-powered devices such as medical implants and wearable electronic devices. The preparation of electrospun P(VDF-TrFE) nanofibers is of great interest for the fabrication of sensors and self-powered devices, nanogenerators, and sensors. In this regard, it is necessary to investigate the effects of various parameters on the morphology and piezoelectric output voltage of such nanofibers. In this study, we have examined the effect of concentration and feed rate on the nanofiber diameter. It has been found that by increasing the concentration and feed rate of the polymer solution, the diameter of the nanofibers increases. The experimental results and the finite element method (FEM) simulation have also shown consistency; when the nanofiber diameter increases, the output voltage of the nanofibers decreases. This behavior can be related to the strain reduction in the deformed nanofibers
    corecore