770 research outputs found
RCD: Rapid Close to Deadline Scheduling for Datacenter Networks
Datacenter-based Cloud Computing services provide a flexible, scalable and
yet economical infrastructure to host online services such as multimedia
streaming, email and bulk storage. Many such services perform geo-replication
to provide necessary quality of service and reliability to users resulting in
frequent large inter- datacenter transfers. In order to meet tenant service
level agreements (SLAs), these transfers have to be completed prior to a
deadline. In addition, WAN resources are quite scarce and costly, meaning they
should be fully utilized. Several recently proposed schemes, such as B4,
TEMPUS, and SWAN have focused on improving the utilization of inter-datacenter
transfers through centralized scheduling, however, they fail to provide a
mechanism to guarantee that admitted requests meet their deadlines. Also, in a
recent study, authors propose Amoeba, a system that allows tenants to define
deadlines and guarantees that the specified deadlines are met, however, to
admit new traffic, the proposed system has to modify the allocation of already
admitted transfers. In this paper, we propose Rapid Close to Deadline
Scheduling (RCD), a close to deadline traffic allocation technique that is fast
and efficient. Through simulations, we show that RCD is up to 15 times faster
than Amoeba, provides high link utilization along with deadline guarantees, and
is able to make quick decisions on whether a new request can be fully satisfied
before its deadline.Comment: World Automation Congress (WAC), IEEE, 201
Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures
This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast
The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase
L-asparaginase and L-glutaminase can be effectively used for the treatment of patients who suffer from accute lymphoblastic leukemia and tumor cells. Microbial sources are the best source for the bulk production of these enzymes. However, their long-term administration may cause immunological responses, so screening for new enzymes with novel properties is required. Halophilic and halotolerant bacteria with novel enzymatic characteristics can be considered as a potential source for production of enzymes with different immunological properties. In this study, L-asparaginase and L-glutaminase production by halophilic bacteria isolated from Urmia salt lake was studied. Out of the 85 isolated halophilic and halotolerant bacterial strains, 16 (19 %) showed L-asparaginase activity and 3 strains (3.5 %) showed L-glutaminase activity. Strains with the highest activities were selected for further studies. Based on 16S rDNA sequence analysis, it was shown that the selected isolates for L-asparaginase and L-glutaminase production belong to the genus Bacillus and Salicola, respectively. Both enzymes were produced extracellularly. The strain with the most L-asparaginase production did not show L-glutaminase production which is medically important. The effects of key parameters including temperature, initial pH of the solution, and concentrations of glucose, asparagine or glutamine, and sodium chloride were evaluated by means of response surface methodology (RSM) to optimize enzymes production. Under the obtained optimal conditions, L-asparaginase and L-glutaminase production was increased up to 1.5 (61.7 unit/mL) and 2.6 fold (46.4 unit/mL), respectively
Characterization of anaerobic biotransformation of β-hexachlorocyclohexane
Hexachlorocyclohexane (HCH) is a contaminant of concern worldwide. HCH has four main isomers α, β, δ, and γ-HCH. Since only γ-HCH (Lindane) has a specific pesticide activity, the purification of Lindane resulted in the production of other waste residues. β-HCH is the most persistent one, has relatively low water solubility and is considered highly carcinogenic and health hazardous. A large amount of β-HCH produced as a by-product which was dumped at landfill sites has caused heavy contamination in soil, groundwater, and atmosphere. In this study, we focused on the anaerobic degradation of β-HCH. Thus far, only one anaerobic, Dehalobacter sp. containing, a culture was reported in the literature. Contaminated soil was collected from a highly contaminated site in China and anaerobic microcosms were set up to enrich β-HCH degrading microorganisms. The degradation potential was evaluated by measuring the concentration of the products benzene and mono chlorobenzene (MCB). At the same time, cell growth was monitored by fluorescent microscopy. Illumina sequencing was done for the first and second generation and bacteria belonging to the Firmicutes, including Dehalobacter, Gelria, and Gracilibacter, were dominant. Additionally, the genomic DNA from an active, fourth generation, the β-HCH degrading culture was isolated and a 16s-rRNA clone library was prepared for subsequent sequencing to analyze the overall microbial diversity. Furthermore, compound-specific carbon stable isotope analysis (CSIA) will be applied to investigate the transformation pathway
Feasibility of Primary PCI as the Reperfusion Strategy for Acute ST elevation MI at PIMS
Objective: To determine the feasibility of primary PCI in terms of frequency of patients with acute ST elevation MI found to have a first-medical-contact to needle time of 90 minutes.Methodology: The descriptive, cross sectional case series was conducted at department of Cardiology, PIMS, Islamabad from January 2017 to April 2017Results: A total of 350 patients were enrolled into the study, 67% (235) of which were males and 33% (115) females. Mean age of the participating population was 54 ±7.8 years. The mean first medical contact needle time was 2.3±1.1 hours, out of which a vast majority (73%) fell into the 90 minutes range. The patients had a median first medical contact to needle time of 74 minutes.Conclusion: The study concluded that majority of patients presenting to the emergency department with acute STEMI were found to be feasible for primary PCI as the reperfusion strategy with an FMC to needle time of less than 90 minutes. Therefore, accelerated efforts need to be made to develop this center as a primary PCI capable facility providing such standards of care to patients with ST-elevation MI
A weakly nonlinear Ion-acoustic waves in magnetized electron-positron plasma: a fractional model
In this paper, we investigate the optical soliton solutions for a fractional weakly nonlinear ion-acoustic wave in a magnetized electron–positron plasma using the fractional modified Korteweg–deVries–Zakharov–Kuznetsov (f-mKdV-ZK) model. The fractional calculus framework is employed to describe the non-local effects arising from the long-range interactions and memory effects in the plasma medium. The presence of a magnetic field introduces additional complexities to the dynamics of ion-acoustic waves in electron–positron plasmas. We derive the governing equations for the f-mKdV-ZK model and employ the reductive perturbation method to obtain the corresponding optical soliton solutions. The obtained soliton solutions reveal the influence of fractional order, weak nonlinearity, and magnetic field on the characteristics of the ion-acoustic waves. The results demonstrate the formation and propagation of stable optical solitons in the magnetized electron–positron plasma and provide insights into the fundamental behavior of such systems. This study contributes to the understanding of nonlinear wave dynamics in fractional plasmas and offers potential applications in various plasma physics and astrophysical scenarios
- …