562 research outputs found
Study and Observation of the Variation of Accuracies of KNN, SVM, LMNN, ENN Algorithms on Eleven Different Datasets from UCI Machine Learning Repository
Machine learning qualifies computers to assimilate with data, without being
solely programmed [1, 2]. Machine learning can be classified as supervised and
unsupervised learning. In supervised learning, computers learn an objective
that portrays an input to an output hinged on training input-output pairs [3].
Most efficient and widely used supervised learning algorithms are K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Large Margin Nearest Neighbor
(LMNN), and Extended Nearest Neighbor (ENN). The main contribution of this
paper is to implement these elegant learning algorithms on eleven different
datasets from the UCI machine learning repository to observe the variation of
accuracies for each of the algorithms on all datasets. Analyzing the accuracy
of the algorithms will give us a brief idea about the relationship of the
machine learning algorithms and the data dimensionality. All the algorithms are
developed in Matlab. Upon such accuracy observation, the comparison can be
built among KNN, SVM, LMNN, and ENN regarding their performances on each
dataset.Comment: To be published in the 4th IEEE International Conference on
Electrical Engineering and Information & Communication Technology (iCEEiCT
2018
ADBSCAN: Adaptive Density-Based Spatial Clustering of Applications with Noise for Identifying Clusters with Varying Densities
Density-based spatial clustering of applications with noise (DBSCAN) is a
data clustering algorithm which has the high-performance rate for dataset where
clusters have the constant density of data points. One of the significant
attributes of this algorithm is noise cancellation. However, DBSCAN
demonstrates reduced performances for clusters with different densities.
Therefore, in this paper, an adaptive DBSCAN is proposed which can work
significantly well for identifying clusters with varying densities.Comment: To be published in the 4th IEEE International Conference on
Electrical Engineering and Information & Communication Technology (iCEEiCT
2018
Study and Observation of the Variations of Accuracies for Handwritten Digits Recognition with Various Hidden Layers and Epochs using Neural Network Algorithm
In recent days, Artificial Neural Network (ANN) can be applied to a vast
majority of fields including business, medicine, engineering, etc. The most
popular areas where ANN is employed nowadays are pattern and sequence
recognition, novelty detection, character recognition, regression analysis,
speech recognition, image compression, stock market prediction, Electronic
nose, security, loan applications, data processing, robotics, and control. The
benefits associated with its broad applications leads to increasing popularity
of ANN in the era of 21st Century. ANN confers many benefits such as organic
learning, nonlinear data processing, fault tolerance, and self-repairing
compared to other conventional approaches. The primary objective of this paper
is to analyze the influence of the hidden layers of a neural network over the
overall performance of the network. To demonstrate this influence, we applied
neural network with different layers on the MNIST dataset. Also, another goal
is to observe the variations of accuracies of ANN for different numbers of
hidden layers and epochs and to compare and contrast among them.Comment: To be published in the 4th IEEE International Conference on
Electrical Engineering and Information & Communication Technology (iCEEiCT
2018
Optimasi Perencanaan Produksi Menggunakan Linear Programming Dan Perencanaan Persediaan Bahan Baku Di PT. Sandy Globalindo (SND)
PT. Sandy Globalindo (SND) merupakan salah satu produsen spare part
dan aksesoris otomotif di Indonesia khususnya kendaraan roda 2 (dua). Produk
pertama PT. Sandy Globalindo (SND) adalah foot step untuk kendaraan roda 2
(dua) dan produk unggulannya saat ini adalah Exhaust/ Knalpot untuk kendaraan
roda 2 (dua). Salah satu produk yang diproduksi di PT. Sandy Globalindo (SND)
adalah Exhaust Kawasaki KLX 150. Pada produksi Exhaust Kawasaki KLX 150
terdapat produksi yang tidak sesuai terget sehingga perlu adanya perencanaan
produksi dan perencanaan persediaan bahan baku khususnya Head Silencer KLX
150 yang memiliki lead time 1 minggu. Agar produksi berjalan sesuai target maka
perlu adanya perencanaan produksi dari produk Exhaust Kawasaki KLX 150 dan
perencanaan persediaan bahan baku Head Silencer KLX 150.
Perencanaan produksi menggunakan programa linier membutuhkan data
permintaan, data kapasitas dan hari kerja dalam satu tahunnya. Programa linier
pada studi kasus ini berfungsi untuk mengetahui jumlah produksi yang optimal
dengan memperhatikan ongkos, kapasitas produksi dan demand. Output yang
dihasilkan dari perhitungan ini adalah jumlah produksi yang optimal
perbulannya. Perhitungan ini dibantu dengan softwere WinQSB, dimana softwere
ini digunakan untuk memecahkan masalah Integer Linear Programming dengan
menggunakan metode Big M. Output dari perhitungan ini adalah jumlah produksi
yang optimum dari produk Exhaust Kawasaki KLX 150.
Perencanaan persediaan menggunakan metode EOQ (Eqonomic Order
Quantity) dengan Quantity Discount yang dimana perusahaan mendapat pilihan
dari pihak supplier untuk membeli komponen Head Silencer KLX 150 dengan
harga tertentu sesuai dengan kuantitas yang dipesan. Dalam perhitungan EOQ
yaitu menghitung jumlah komponen yang akan dipesan dengan perbandingan
harga sesuai interval harga yang ditetapkan oleh pihak supplier. EOQ ini
menggambarkan jumlah yang optimum dari sekali pemesanan komponen kepada
supplier. Perhitungan EOQ ini memperhatikan Total Cost dari interval harga
yang ditawarkan oleh supplier. Setelah didapat Total Cost maka dapat dipilih
jumlah pemesanan yang memiliki Total Cost yang terkecil dan juga menghitung
frekuensi pemesanan, waktu interval pemesanan dan re-order point.
Setelah dilakukan perhitungan perencanaan produksi menggunakan
programa linier maka, dihasilkan jumlah produksi pada bulan Januari sampai
dengan bulan Desember sebesar 0, 75, 125, 225, 225, 125, 225, 525, 325, 125,
225 dan 125. Pada bulan Januari produksi sebesar 0 artinya pada bulan Januari
tidak adanya produksi. Perhitungan perencanaan persediaan menggunakan
metode EOQ dengan Quantity Discount dihasilkan kuantitas pemesanan per
sekali pesan adalah 101 unit komponen Head Silencer KLX 150 dengan total
biaya Rp. 152.749.263 dan frekuensi pemesanan sebanyak 23 kali pemesanan
dengan waktu interval pemesanan 0,04 tahun, pemesanan ulang/ re-order point
yang harus dilakukan ketika komponen Head Silencer KLX 150 tinggal tersisa
sebanyak 65 unit lagi dengan lead time pemesanan bahan baku/ komponen
selama 7 hari.
Kata Kunci: PT. Sandy Globalindo (SND), Programa Linier, Perencanaan
Produksi, Perencanaan Persediaan, EOQ, Quantity Discount
ANALISA MANAJEMAN WAKTU MENGGUNAKAN METODE CPM(CRITICAL PATH METHOD) DAN PERT(PROGRAM EVALUATION AND REVIEW TECHNIQUE) PADA PROYEK PEMBANGUNAN RUANG KELAS BARU INSTITUT AGAMA ISLAM NAZHATUT THULLAB PULAU MADURA
Manajemen konstruksi adalah perencanaan, penjadwalan dan pengendalian proyek, untuk mencapai tujuan proyek tersebut tanpa adanya penyimpangan. Manajemen harus membandingkan biaya, waktu, dan kinerja dari program terhadap rencana anggaran biaya, rencana waktu dan kinerja dalam setiap aktifitas. Manajemen konstruksi dapat diatur sesuai dengan sumber daya yang telah direncanakan yaitu tenaga kerja (manpower), peralatan (machine), metode (method), bahan (material), uang (money), dan pemasaran (market) Metode yang di gunakan dalam Penelitian ini adalah CPM(Critical Path Method) dan PERT(Project Evaluation and Tecnique Review). Peneliti melakukan Pengoptimalan Waktu Pelaksanaan pada proyek Pembangunan Ruang Kelas Baru Institut Agama Islam Nazhatut Thullab Pulau Madura yang sedang mengalami keterlambatan waktu pengerjaannya. Dari hasil penelitian Mendapatkan perhitungan waktu yang lebih optimal dengan menggunakan metode CPM dan PER
INDONESIA – CHINA BILATERAL COOPERATIONS: IMPACT OF CSP (COMPREHENSIVE STRATEGIC PARTNERSHIP) TOWARD INFRASTRUCTURE DEVELOPMENT UNDER JOKO WIDODO'S ERA
Abstract This research is the answer to how strategic partnerships affect infrastructure development. The researcher focuses on the comprehensive strategic partnership between Indonesia-China toward Indonesia's infrastructure development under Joko Widodo's era. Furthermore, the author will explain the benefits of the collaboration for China as Indonesia's partner country. In addition, the researcher will elaborate by using variables which are delivered in bilateral concepts, and also will use qualitative methods, in which data collections are from the study of literature - books, journals, documents that are taken from websites and trusted websites to strengthen researcher's argument. The results of this study indicate that the impacts of comprehensive strategic partnership on Indonesia's infrastructure development are realizing Indonesia's national connectivity agenda which was listed in the MP3EI document with China's helping through investment. in addition, by helping Indonesia in developing infrastructure, China succeeded in realizing and expanding the 21st century silk road agenda. Keyword : Bilateral Relations; Comprehensive strategic Partnership; Infrastructure development
Antigen-Specific Memory B-cell Responses to Enterotoxigenic Escherichia coli Infection in Bangladeshi Adults
Background: Multiple infections with diverse enterotoxigenic E. coli (ETEC) strains lead to broad spectrum protection against ETEC diarrhea. However, the precise mechanism of protection against ETEC infection is still unknown. Therefore, memory B cell responses and affinity maturation of antibodies to the specific ETEC antigens might be important to understand the mechanism of protection. Methodology In this study, we investigated the heat labile toxin B subunit (LTB) and colonization factor antigens (CFA/I and CS6) specific IgA and IgG memory B cell responses in Bangladeshi adults (n = 52) who were infected with ETEC. We also investigated the avidity of IgA and IgG antibodies that developed after infection to these antigens. Principal Findings Patients infected with ETEC expressing LT or LT+heat stable toxin (ST) and CFA/I group or CS6 colonization factors developed LTB, CFA/I or CS6 specific memory B cell responses at day 30 after infection. Similarly, these patients developed high avidity IgA and IgG antibodies to LTB, CFA/I or CS6 at day 7 that remained significantly elevated at day 30 when compared to the avidity of these specific antibodies at the acute stage of infection (day 2). The memory B cell responses, antibody avidity and other immune responses to CFA/I not only developed in patients infected with ETEC expressing CFA/I but also in those infected with ETEC expressing CFA/I cross-reacting epitopes. We also detected a significant positive correlation of LTB, CFA/I and CS6 specific memory B cell responses with the corresponding increase in antibody avidity. Conclusion: This study demonstrates that natural infection with ETEC induces memory B cells and high avidity antibodies to LTB and colonization factor CFA/I and CS6 antigens that could mediate anamnestic responses on re-exposure to ETEC and may help in understanding the requirements to design an effective vaccination strategies
Multi-Operator Cell Tower Locations Prediction from Crowdsourced Data
Cell tower locations are not publicly available due to business interests of wireless providers. Very often wireless providers provide exaggerated coverage maps that may mislead the public. In addition to providing a neutral check on the coverage maps, prediction of cell tower locations hosting multiple operators’ access nodes could also be helpful in disaster communications and public safety in general. The localization of the disaster-affected towers can be very conducive to respond and reach to the victims. Further, victims’ devices could utilize this knowledge to initiate device-to-device (D2D) or unmanned aerial vehicular (UAV) communications as alternatives to the damaged cellular infrastructure. Publicly available crowdsourced cell (base station) locations and FCC’s sites can be used to predict the cell tower/site locations in the United States. In this work, we utilized a weighted k-means algorithm to predict cell tower locations from OpenCellid crowdsourced dataset and implemented a mapping algorithm to locate nearest physical towers. We map the predicted towers to two different sources of physical towers. Our comparison shows a significant accuracy in predicting tower locations regardless of sources of physical towers. The technique can be used to predict the tower locations in other countries as well
- …
