22 research outputs found

    Assessing Molecular Signature for Some Potential Date (Phoenix dactylifera L.) Cultivars from Saudi Arabia, Based on Chloroplast DNA Sequences rpoB and psbA-trnH

    Get PDF
    Phoenix dactylifera L. (date palm), being economically very important, is widely cultivated in the Middle East and North Africa, having about 400 different cultivars. Assessment of date cultivars under trading and farming is a widely accepted problem owing to lack of a unique molecular signature for specific date cultivars. In the present study, eight different cultivars of dates viz., Khodry, Khalas, Ruthana, Sukkari, Sefri, Segae, Ajwa and Hilali were sequenced for rpoB and psbA-trnH genes and analyzed using bioinformatics tools to establish a cultivar-specific molecular signature. The combined aligned data matrix was of 1147 characters, of which invariable and variable sites were found to be 958 and 173, respectively. The analysis clearly reveals three major groups of these cultivars: (i) Khodary, Sefri, Ajwa, Ruthana and Hilali (58% BS); (ii) Sukkari and Khalas (64% BS); and (iii) Segae. The economically most important cultivar Ajwa showed similarity with Khodary and Sefri (67% BS).The sequences of the date cultivars generated in the present study showed bootstrap values between 38% and 70% so these sequences could be carefully used as molecular signature for potential date cultivars under trading and selection of genuine cultivars at the seedling stage for farming

    Use of ISSR markers to assess the genetic diversity in wild medicinal Ziziphus spina-christi (L.) Willd. collected from different regions of Saudi Arabia

    No full text
    Ziziphus spina-christi (sidr) is a shrub, sometimes a tree, native to a vast area of Africa stretching from Mauritania to West Africa. In the Kingdom of Saudi Arabia, it is an exotic medicinal plant for many diseases. The aim of this study was to assess the genetic diversity within and among 34 accessions of Z. spina-christi collected from different regions of Saudi Arabia. The amplification of genomic DNA with 11 inter-simple sequence repeat (ISSR) primers yielded 105 scorable loci, of which 93.4% were found to be polymorphic. The observed number of alleles (na), effective number of alleles (ne), Nei's gene diversity (h) and genetic diversity estimated by Shannon's information index (I) were 1.93, 1.44, 0.26 and 0.41, respectively. The total genetic diversity, Ht (0.266 ± 0.0289) was close to the average intrapopulation genetic diversity, Hs (0.2199 ± 0.0216). A high level of gene flow (Nm = 2.37) between populations, reflecting high genetic differentiation (Gst = 0.1739). The analysis of molecular variance showed that the maximum value of genetic variation was found within populations (90%), whereas a low value of genetic variance was observed among populations. The analysis using the unweighted pair-group method with arithmetic averages clustered the population from Farasan Island as an out-group due to its geographical origin. The obtained results demonstrate that the ISSR markers may be used for evaluation of the genetic diversity due to their efficiency in revealing polymorphism even in closely related germplasm and may help in Ziziphus genome analysis

    Screening and Estimation of Bioactive Compounds of <i>Azanza garckeana</i> (Jakjak) Fruit Using GC-MS, UV–Visible Spectroscopy, and HPLC Analysis

    No full text
    Azanza garckeana (F. Hoffm). Exell and Hillc. is an important food and medicinal plant that has been used in tropical Africa. Therefore, this study aimed to investigate the nutritional value of jakjak fruit using different analytical techniques. The obtained results have demonstrated that jakjak fruit is very rich in total soluble sugar, constituting about 48% of the dry weight. Moreover, the chromatographic analysis revealed that jakjak fruit contained a high amount of glucose, fructose, maltose, and ascorbic acid. Further, GC-MS analysis detected four compounds related to secondary metabolites. Some of these detected constituents have medicinal value. For example, phenol, 2,4-bis (1,1-dimethylethyl) has been reported to have many functions such as antioxidant activity, anticancer, antifungal, and antibacterial properties. Furthermore, the antioxidant potential of different concentrations of deionized water and methanolic extracts was estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results showed that the scavenging activity of the DPPH radical was found to be raised with increasing concentrations of fruit extracts. The concentration (50%) of both methanol and deionized water gave the best inhibition percentage (91.7 and 84.4%), respectively. In contrast, the methanolic extract has shown significant results compared to deionized water. This study concluded that jakjak fruit is very rich in total soluble sugar and phenolic compounds, which can be used as a source of polysaccharides and antioxidants for the human diet as well as raw materials for downstream industries

    Antioxidant System Response and cDNA-SCoT Marker Profiling in Phoenix dactylifera L. Plant under Salinity Stress

    No full text
    Many Phoenix dactylifera (date palm) cultivars are grown in the arid and semiarid regions of the world, including Saudi Arabia. P. dactylifera is highly tolerant to salinity stress. To investigate the response of Khalas cultivar of P. dactylifera, two-month-old plants were treated with sodium chloride (50, 100, and 150 mM NaCl) for three months. Our result showed that proline content was higher in all treated plants compared to control plants. Thiobarbituric acid reactive substances (TBARS) were increased at 100 and 150 mM NaCl treatments; however, the result was found nonsignificant between control and plants treated at 50 mM NaCl. Similarly, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were 0.805 and 0.722 U/mg protein/min, respectively, and were greater at 100 and 150 mM NaCl treatments compared to the control plants. Total chlorophyll content and fresh weight of shoots and roots decreased substantially with the increase of salinity. A cDNA start codon-targeted (cDNA-SCoT) marker showed a variation in different gene expressions profiling between treated and untreated plants under various NaCl concentrations

    Biochemical and Genetical Responses of Phoenix dactylifera L. to Cadmium Stress

    No full text
    The cadmium (Cd), a heavy metal, causes toxicity, which leads to hampering the growth and development of the plant. The molecular and biochemical approaches were used for the investigation of antioxidant system response and genotoxicity in date palm (Phoenix dactylifera L.) cv. Sagai in pot experiment having Cd. The root length was more affected than the shoot length as more accumulation of Cd occurs in roots. Fresh weights of root and shoot were reduced significantly in treated plants as compared to the control. The proline content was increased at low concentration of Cd (300 µM-CdCl2) than the medium and high concentrations (600 and 900 µM-CdCl2), respectively. The thiobarbituric acid reactive substances (TBARS) content was increased at 600 and 900 µM-CdCl2 compared to the plants treated at 300 µM-CdCl2 and controls. Antioxidant enzymatic assay was performed under Cd stress and compared with control plants. The catalase (CAT) and superoxide dismutase (SOD) activities were found to be high in plants treated with CdCl2 at 300 µM compared to at 600 and 900 µM-CdCl2, respectively. The genotoxicity of Cd was assessed using the inter-simple sequence repeat (ISSR) marker where all treated and control plants were clustered into three main groups based on genetic similarity. P. dactylifera plants were found to be more divergent at high Cd stress as compared to control and plants treated at low concentration of Cd

    Harnessing the Rhizosphere of the Halophyte Grass Aeluropus littoralis for Halophilic Plant-Growth-Promoting Fungi and Evaluation of Their Biostimulant Activities

    No full text
    Hydroponic systems have gained interest and are increasingly used in hot and dry desert areas. Numbers of benefits are offered by hydroponic systems such as the ability to save water, enhance nutrients use efficiency, easy environmental control, and prevention of soil-borne diseases. However, the high consumption of chemical fertilizers for nutrient solution and the sensitivity of closed hydroponic systems to salinity are issues that need solutions. Thus, the main goal of our research activities is to isolate plant growth promoting fungi in order to develop sustainable hydroponic systems. We are working on isolating and testing the possibility to incorporate the cell-free filtrate (CFF) of plant growth promoting fungi (PGPF) in the composition of the nutrient solution. In this work, we isolated six strains of PGPF from the rhizosphere of the halophyte grass Aeluropus littoralis. Phylogenetic analyses of DNA sequences amplified by ITS1 and ITS4 primers identified the isolated fungi as: Byssochlamys spectabilis, Chaetomium globosum, Cephalotheca foveolata, Penicillium melinii, Alternaria tenuissima, and Nigrospora chinensis. The promoting of vigor in tobacco seedlings was used as criteria to evaluate the biostimulant activity of these fungi by adding either their mycelia (DE: direct effect) or their cell-free filtrates (CFF: indirect effect) to the plant-growth media. The best significant growth stimulation was obtained with plants treated by B. spectabilis. However, only the CFFs of Byssochlamys spectabilis (A5.1) and Penicillium melinii (A8) when added at a dilution factor of 1/50 to half-strength nutritive solution (0.5NS) resulted in significant improvement of all assessed growth parameters. Indeed, the A5.1CFF and A8CFF in 0.5NS induced a significant better increase in the biomass production when compared to NS or 0.5NS alone. All fungi produced indole acetic acid in the CFFs, which could be one of the key factors explaining their biostimulant activities. Furthermore, six genes involved in nitrogen-metabolism (NR1 and NRT1), auxin biosynthesis (Tryp1 and YUCCA6-like), and brassinosteroid biosynthesis (DET2 and DWF4) were shown to be induced in roots or leaves following treatment of plants with the all CFFs. This work opens up a prospect to study in deep the biostimulant activity of PGPFs and their applications to decrease the requirement of chemical fertilizers in the hydroponic growing systems

    Phytochemical Analysis of Maerua oblongifolia, and Assessment of the Genetic Stability of M. oblongifolia under In Vitro Nanoparticles Exposure

    No full text
    Maerua oblongifolia (Forssk.) is a rare medicinal plant in Saudi Arabia that is threatened with extinction owing to overexploitation, climate change, and poor seed germination. This study aimed to identify, for the first time, the phytochemical compounds existing in M. oblongifolia leaves&rsquo; extract using gas chromatography and mass spectroscopy (GC-MS). In addition, it aimed to determine the plant growth and genetic uniformity of the plant under the exposure of in vitro biogenic silver and zinc oxide nanoparticles. The GC-MS analysis detected 28 phytochemical compounds. The main compounds obtained from the leaf extracts were triphenylphosphine oxide and 4,5-Dihydrooxazole-5-one, 2-methyl-4-[2,3,4-methozxybenzylidnen]-. The supplementation of AgNPs and ZnO NPs to the culture media significantly enhanced the plant biomass, shoot length, and shoot regeneration of M. oblongifolia. The genetic stability of the plant material was evaluated using inter-simple sequence repeat (ISSR) markers. The application of Ag and ZnO NPs showed genetic stability among treated plants. However, the higher concentration of both nanoparticles induced minor genetic variations recorded as 4.4 and 2.2% in Ag and ZnO NPs, respectively. This work focused on the detection of phytochemical active constituents from M. oblongifolia shoot cultures, and it will be useful for the large-scale manufacturing of these compounds for pharmaceutical and commercial purposes. In addition, it confirmed that the exposure of silver and zinc oxide nanoparticles to the in vitro culture media of plant tissues might be a secure technique with which to produce true-to-type plants

    Analysis of Salinity Tolerance in Tomato Introgression Lines Based on Morpho-Physiological and Molecular Traits

    No full text
    The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: Solanum lycopersicum cv-6203 × Solanum habrochaites and Solanum lycopersicum M82 × Solanum pennellii. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, SlSOS1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While SlHKT1.1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, SlSOS2 and SlSOS3 genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, SlSOS1 and SlHKT1.2 genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from S. habrochaites and S. pennellii genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions

    Phytochemical Analysis of <i>Maerua oblongifolia</i>, and Assessment of the Genetic Stability of <i>M. oblongifolia</i> under In Vitro Nanoparticles Exposure

    No full text
    Maerua oblongifolia (Forssk.) is a rare medicinal plant in Saudi Arabia that is threatened with extinction owing to overexploitation, climate change, and poor seed germination. This study aimed to identify, for the first time, the phytochemical compounds existing in M. oblongifolia leaves’ extract using gas chromatography and mass spectroscopy (GC-MS). In addition, it aimed to determine the plant growth and genetic uniformity of the plant under the exposure of in vitro biogenic silver and zinc oxide nanoparticles. The GC-MS analysis detected 28 phytochemical compounds. The main compounds obtained from the leaf extracts were triphenylphosphine oxide and 4,5-Dihydrooxazole-5-one, 2-methyl-4-[2,3,4-methozxybenzylidnen]-. The supplementation of AgNPs and ZnO NPs to the culture media significantly enhanced the plant biomass, shoot length, and shoot regeneration of M. oblongifolia. The genetic stability of the plant material was evaluated using inter-simple sequence repeat (ISSR) markers. The application of Ag and ZnO NPs showed genetic stability among treated plants. However, the higher concentration of both nanoparticles induced minor genetic variations recorded as 4.4 and 2.2% in Ag and ZnO NPs, respectively. This work focused on the detection of phytochemical active constituents from M. oblongifolia shoot cultures, and it will be useful for the large-scale manufacturing of these compounds for pharmaceutical and commercial purposes. In addition, it confirmed that the exposure of silver and zinc oxide nanoparticles to the in vitro culture media of plant tissues might be a secure technique with which to produce true-to-type plants

    Phytochemical Compound Profile and the Estimation of the Ferruginol Compound in Different Parts (Roots, Leaves, and Seeds) of Juniperus procera

    No full text
    Secondary plant metabolites and their derivatives play a significant role in human health. Ferruginol is a diterpene phenol that has recently received attention for its pharmacological properties, including antibacterial, antitumor, antimalarial, and cardioprotective effects. Recently, we detected the ferruginol compound in the leaf and seed extracts of Juniperus procera using different analytical approaches. The present work aims at detecting phytochemical compounds in a root extract of J. procera and estimating the amount of ferruginol compound in different parts of Juniperus procera. To screen the phytochemical compounds present in the root extract of J. procera, Gas chromatography/mass spectrometry (GC/MS) was performed. For ferruginol identification and estimation, high-performance liquid chromatography (HPLC) with the ferruginol reference standard and high-resolution direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) (DART-TOF-MS) analysis were used. GC/MS analysis revealed more than 20 bioactive compounds related to secondary plant metabolites in the root extract of J. procera with biological activity. The DART-TOF-MS result showed the typical positive ion spectra of ferruginol, and the HPLC result confirmed that the root extract of J. procera contains the ferruginol compound. In contrast, the root extract of J. procera contained a significant amount of ferruginol compared to that in the leaf and seed extracts. All parts of the J. procera contained the ferruginol compound and proved that ferruginol might be accumulated in the roots, leaves, and seeds of J. procera
    corecore