17 research outputs found

    Polycyclic Aromatic Hydrocarbons in Grilled Meats from Restaurants

    Get PDF
    Polycyclic aromatic hydrocarbons are a group of lipophilic compounds that can be generated during the preparation of food items at elevated temperatures. They are regarded as potentially genotoxic and carcinogenic to human beings, related to increased incidence of breast and colorectal cancers, oxidative DNA injury, and bad effects on children neuro-differentiation. Thus, they are considered a public health concerns. A total of thirty samples of grilled beef steak, beef kofta and chicken (ten each) were collected from different restaurants. The samples were extracted by magnesium sulfate and sodium acetate in acetonitrile then purified in magnesium sulfate, primary, secondary amine and silica gel, and finally measured by gas chromatography-mass spectrometry (GC-MS). Benzo[a]pyrene was recorded with the highest average level (3.63µg/kg) in grilled kofta samples, but it was not detected in chicken samples. On the other hand, PAH4, PAH8 and ƩPAHs content were more abundant in grilled beef steak (5.32, 9.97 and 56.91µg/kg). Meanwhile, they recorded the least concentrations of grilled chicken from different restaurants. Furthermore, benzo[a]pyrene exceeded the permissible limits of the European Commission and Egyptian National Food Safety Authority in grilled kofta samples; further studies are needed to investigate the limits of exposure to these harmful compounds from meats and other food items

    Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality

    Get PDF
    Background: DNA methylation patterns associated with habitual diet have not been well studied. Methods: Diet quality was characterized using a Mediterranean-style diet score and the Alternative Healthy Eating Index score. We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400 000 CpGs (cytosine-guanine dinucleotides) in 5 population-based cohorts including 6662 European ancestry, 2702 African ancestry, and 360 Hispanic ancestry participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease risk factors and examined their longitudinal associations with all-cause mortality. Results: We identified 30 CpGs associated with either Mediterranean-style diet score or Alternative Healthy Eating Index, or both, in European ancestry participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni correctedP<1.6x10(-3)). Hypermethylation of cg18181703 (SOCS3) was associated with higher scores of both Mediterranean-style diet score and Alternative Healthy Eating Index and lower risk for all-cause mortality (P=5.7x10(-15)). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (P<0.05). MR analysis revealed 8 putatively causal associations for 6 CpGs with 4 cardiovascular disease risk factors (body mass index, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes mellitus; Bonferroni corrected MRP<4.5x10(-4)). For example, hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations (MR,P=1.5x10(-14)).and hypermethylation of cg02079413 (SNORA54;NAP1L4) was associated with body mass index (corrected MR,P=1x10(-6)). Conclusions: Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in European ancestry individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment

    Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips

    No full text
    Acrylamide is classified as a toxic and a prospective carcinogen to humans, and it is formed during thermal process via Maillard reaction. In order to find innovative ways to diminish acrylamide formation in potato chips, several extracts of agricultural wastes including potato peels, olive leaves, lemon peels and pomegranate peels extracts were examined as a soaking pre-treatment before frying step. Total phenolic, total flavonoids, antioxidant activity, and the reduction in sugar and asparagine contents were additionally performed. Proximate composition of these wastes was found to be markedly higher in fat, carbohydrate and ash contents. Lemon peels and potato peels showed almost similar phenolic content (162 ± 0.93 and 157 ± 0.88 mg GAE /g, respectively) and exhibited strong ABTS and DPPH radical scavenging activities than the other wastes. The reduction percentage of reducing sugars and asparagine after soaking treatment ranged from 28.70 to 39.57% and from 22.71 to 29.55%, respectively. HPLC results showed higher level of acrylamide formation in control sample (104.94 mg/kg) and by using the wastes extracts of lemon peels, potato peels, olive leaves, and pomegranate peels succeeded to mitigate acrylamide level by 86.11%, 69.66%, 34.03%, and 11.08%, respectively. Thus, it can be concluded that the soaking of potato slices in the tested wastes extracts as antioxidant as pre-treatment before frying reduces the formation of acrylamide and in this way, the risks connected to acrylamide consumption could be regulated and managed

    The Impact of <i>Chlorella vulgaris</i> Fortification on the Nutritional Composition and Quality Characteristics of Beef Burgers

    No full text
    Chlorella vulgaris (C.V) is known for its high protein and nutrient contents and has been touted as a potential functional ingredient in food products. For this study, beef burgers were formulated with varying levels of Chlorella vulgaris fortification (0%, 0.5%, 1%, and 1.5% by weight). The nutritional composition, including proximate analysis and mineral content, was determined for each treatment group. The quality characteristics evaluated included thiobarbituric acid (TBA), total volatile base nitrogen (TVBN), pH, and total acidity. The study included extracting the active substances from Chlorella vulgaris using three solvents, 50% ethanol, 95% ethanol, and water, to evaluate the effect on the antimicrobial and antioxidant activity. The results showed that the water extract had the highest total phenolic content (183.5 mg gallic acid equivalent per gram) and the highest flavonoid content (54 mg quercetin per gram). The aqueous extract had the highest content of total antioxidants, followed by the 95% ethanol and 50% ethanol extracts. Meanwhile, the 50% ethanol extract showed the best antimicrobial activity, while the aqueous extract had less of an effect on Gram-positive bacteria and no effect on E. coli. For the burger treatments, at the end of the storage period, it was observed that the microbial load of the treatments decreased compared to the control, and there was a high stability in the total volatile base nitrogen (TVBN) values for the treatments compared to the control, reaching a value of 22.4 at month 5, which is well above the acceptable limit, indicating spoilage. The pH values were higher for all of the treatments, with a lower total acidity for all of the treatments compared to the control. In conclusion, utilizing Chlorella vulgaris algae as a natural preservative to extend the freshness of burgers is a sustainable and innovative approach to food preservation. By harnessing the power of this green superfood, we not only enhance the shelf life of our food products but also contribute to a healthier and more environmentally friendly food industry

    Oxidative stability of DHA phenolic ester

    No full text
    International audienceDocosahexaenoic acid vanillyl ester (DHA-VE) was synthesized from docosahexaenoic acid ethyl ester (DHA-EE) and vanillyl alcohol by a solvent-free alcoholysis process catalysed by Candida antarctica lipase B. Oxidative stability of pure DHA-VE and the crude reaction medium consisting of 45% DHA-VE and 55% DHA-EE were compared with that of DHA-EE under various storage conditions. Oxidation progress was followed by determination of conjugated dienes and FTIR measurements. Analyses showed that DHA-EE was rapidly oxidised under all storage conditions in comparison with DHA-VE and crude reaction medium, whatever the temperature and the storage time. The grafting of vanillyl alcohol appeared as a powerful way to stabilize DHA against oxidation. Thanks to their stability, both DHA-VE and the crude reaction medium, allowing the production of the ester, offer huge potential as functional ingredients

    Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract

    No full text
    Two successive field trials were carried out at the experimental farm of the Agriculture Department of Fayoum University, Fayoum, Egypt, to investigate the sole or dual interaction effect of applying a foliar spray of Aloe saponaria extract (Ae) or potassium silicate (KSi) on reducing the stressful salinity impacts on the development, yield, and features of roselle (Hibiscus sabdariffa L.) plants. Both Ae or KSi were used at three rates: 0% (0 cm3 L&minus;1), 0.5% (5 cm3 L&minus;1), and 1% (10 cm3 L&minus;1) and 0, 30, and 60 g L&minus;1, respectively. Three rates of salinity, measured by the electrical conductivity of a saturated soil extract (ECe), were also used: normal soil (ECe &lt; 4 dS/m) (S1); moderately-saline soil (ECe: 4&ndash;8 dS/m) (S2); and highly-saline soil (ECe: 8&ndash;16 dS/m) (S3). The lowest level of salinity yielded the highest levels of all traits except for pH, chloride, and sodium. Ae at 0.5% increased the values of total soluble sugars, total free amino acids, potassium, anthocyanin, a single-photon avalanche diode, stem diameter, fruit number, and fresh weight, whereas 1% of Ae resulted in the highest plant height, chlorophyll fluorescence (Fv/Fm), performance index, relative water content, membrane stability index, proline, total soluble sugars, and acidity. KSi either at 30 or 60 g L&minus;1 greatly increased these abovementioned attributes. Fruit number and fruit fresh weight per plant also increased significantly with the combination of Ae at 1% and KSi at 30 g L&minus;1 under normal soil conditions

    Compost Improving Morphophysiological and Biochemical Traits, Seed Yield, and Oil Quality of <i>Nigella sativa</i> under Drought Stress

    No full text
    This study aimed to determine the effects of compost amendment on the soil properties, as well as the morphophysiological responses, seed yield, oil content, and fatty-acid profile. of Nigella sativa plants under drought stress conditions. In a split-plot design, the field experiment was carried out during two seasons (2020/2021 and 2021/2022), involving three irrigation regimes (named I100, I75, and I50 of crop evapotranspiration) with three levels of compost application (C0, C15, and C30). Soil porosity, permeability, pore geometry, water-holding capacity, organic content, and soil cation exchangeable capacity were improved in response to applied compost levels. The growth, physiology, biochemistry, and yield characteristics of Nigella sativa plants were positively affected by compost addition but negatively affected by increasing water stress severity. Deficit irrigation regimes increased osmoprotectant substances (i.e., proline, total free amino acids, carbohydrates, and total soluble sugar). Compared to the control (I100), deficit irrigation (I50) reduced fixed and essential oil by 16.64% and 39.57% over two seasons. Water stress increased the content of saturated fatty acids, while unsaturated fatty acids decreased. Compost application of (C30) resulted in a significant increase in seed yield, fixed oil, and essential oil of Nigella sativa plants by 34.72%, 46.55%, and 58.11% respectively, compared to the control (C0). Therefore, this study concluded that compost amendment improved soil properties and significantly mitigated the detrimental effects of drought on Nigella sativa plants, resulting in a considerable increase in seed yield and its oil content, particularly polyunsaturated fatty acids, which are distinguished by their beneficial effects on human health

    Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties

    No full text
    International audienceRecently, the application of nanotechnology in food sector and the agriculture attract the attention compared to its biomedical application. The aims of the current study was to synthesize and characterize cobalt ferrites nanoparticles [(CoFe2O4) NPs] by combustion method employing glycine as fuels and to evaluate their antimicrobial against pathogenic bacteria and fungi and anti cancer properties against MCF-7 breast cancer cells line. The results indicated that the particles size of the synthesized (CoFe2O4) NPs was 40 nm. These (CoFe2O4) NPs showed potential antibacterial properties against Gram-negative bacteria (Escherichia coli, Salmonella typhi) and Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus) as well as the pathogenic fungi (Aspergillus flavus and Aspergillus ochraceus) in a dose dependent manner with maximum concentration of 1.8 mg/ml. (CoFe2O4) NPs also showed weak antiradical but have cytotoxic effects against MCF-7 breast cancer cells line and succeeded to decrease the cell viability at a concentration of 2 mg/ml. It could be concluded that (CoFe2O4) NPs is a promise candidate as antimicrobial and anticancer agent for food sector and medical application

    Enzymatic production of bioactive docosahexaenoic acid phenolic ester

    No full text
    Docosahexaenoic acid (DHA) is increasingly considered for its health benefits. However, its use as functional food ingredient is still limited by its instability. In this work, we developed an efficient and solvent-free bioprocess for the synthesis of a phenolic ester of DHA. A fed-batch process catalyzed by Candida antarctica lipase B was optimised, leading to the production of 440 g/L vanillyl ester (DHA-VE). Structural characterisation of the purified product indicated acylation of the primary OH group of vanillyl alcohol. DHA-VE exhibited a high radical scavenging activity in acellular systems. In vivo experiments showed increased DHA levels in erythrocytes and brain tissues of mice fed DHA-VE-supplemented diet. Moreover, in vitro neuroprotective properties of DHA-VE were demonstrated in rat primary neurons exposed to amyloid-β oligomers. In conclusion, DHA-VE synergized the main beneficial effects of two common natural biomolecules and therefore appears a promising functional ingredient for food applications
    corecore