6 research outputs found

    Land use/land cover changes in Addalaichenai DS Division from 1991 to 2011

    Get PDF
    Land use / land cover information is the basic pre-requisite for managing land, water and vegetation resources. The information on land use / land cover available today in the form of thematic maps and published statistical figures in records. Publications are inadequate, inconsistent, and do not provide updated information on the changing land use patterns, process and their spatial distribution. A comprehensive household sample survey, enterprise sample survey, institutional survey and formal interviews were carried out as primary data source. In order to supplement the data gathered in the field, secondary data were gathered such as relevant research reports and articles written on the town and its functions, land issues and official publications and reports issued by the UDA, Land Commissioners Department, Title Settlement Department and the Department of Census and Statistics, publications by relevant authorities. The samples were processed and analyzed using advanced spatial information techniques. Geographic Information System (GIS) has been utilized to generate maps and diagrams and to find suitable areas for the stipulated criteria. The current research focused the main characteristics of the Addalaichenai Divisional Secretariat area and its immediate periphery. However, the area covering the coastal belt will be considered as the potential development areas. Further the rapid development such as high ways, Oluvil port project, urbanization, re-greening projects, etc., after the disaster (war & tsunami) are the prime elements in the process of Land use / land cover changes in Addalaichenai DS Division. It has grown up to be urban town in the south east region with it slim of its municipality

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurement of the tt¯ cross section and its ratio to the Z production cross section using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive top-quark-pair production cross section σtt¯ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at √s = 13.6 TeV, using 29 fb−1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σtt¯=850±3(stat.)±18(syst.)±20(lumi.) pb. The ratio of the tt¯ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+e− and μ+μ− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the tt¯ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, Rtt¯/Z=1.145±0.003(stat.)±0.021(syst.)±0.002(lumi.) is consistent with the Standard Model prediction using the PDF4LHC21 PDF set

    Congenital heart disease in the ESC EORP Registry of Pregnancy and Cardiac disease (ROPAC)

    Get PDF

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    No full text
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Search for non-resonant Higgs boson pair production in the 2b + 2ℓ + EmissT final state in pp collisions at √s = 13 TeV with the ATLAS detector

    No full text
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (b¯b) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with ℓ+ℓ−+ neutrinos (ℓ = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed
    corecore