112 research outputs found

    Tumor growth and angiogenesis is impaired in CIB1 knockout mice

    Get PDF
    Abstract Background Pathological angiogenesis contributes to various ocular, malignant, and inflammatory disorders, emphasizing the need to understand this process more precisely on a molecular level. Previously we found that CIB1, a 22 kDa regulatory protein, plays a critical role in endothelial cell function, angiogenic growth factor-mediated cellular functions, PAK1 activation, MMP-2 expression, and in vivo ischemia-induced angiogenesis. Since pathological angiogenesis is highly dependent on many of these same processes, we hypothesized that CIB1 may also regulate tumor-induced angiogenesis. Methods To test this hypothesis, we allografted either murine B16 melanoma or Lewis lung carcinoma cells into WT and CIB1-KO mice, and monitored tumor growth, morphology, histology, and intra-tumoral microvessel density. Results Allografted melanoma tumors that developed in CIB1-KO mice were smaller in volume, had a distinct necrotic appearance, and had significantly less intra-tumoral microvessel density. Similarly, allografted Lewis lung carcinoma tumors in CIB1-KO mice were smaller in volume and mass, and appeared to have decreased perfusion. Intra-tumoral hemorrhage, necrosis, and perivascular fibrosis were also increased in tumors that developed in CIB1-KO mice. Conclusions These findings suggest that, in addition to its other functions, CIB1 plays a critical role in facilitating tumor growth and tumor-induced angiogenesis

    Carotid atherosclerotic plaque segmentation in multi-weighted MRI using a two-stage neural network: Advantages of training with high-resolution imaging and histology

    Get PDF
    INTRODUCTION: A reliable and automated method to segment and classify carotid artery atherosclerotic plaque components is needed to efficiently analyze multi-weighted magnetic resonance (MR) images to allow their integration into patient risk assessment for ischemic stroke. Certain plaque components such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater likelihood of plaque rupture and stroke event. Assessment for presence and extent of LRNC could assist in directing treatment with impact upon patient outcomes. METHODS: To address the need to accurately determine the presence and extent of plaque components on carotid plaque MRI, we proposed a two-staged deep-learning-based approach that consists of a convolutional neural network (CNN), followed by a Bayesian neural network (BNN). The rationale for the two-stage network approach is to account for the class imbalance of vessel wall and background by providing an attention mask to the BNN. A unique feature of the network training was to use ground truth defined by both high-resolution RESULTS: Our results show that the proposed method yielded accurate segmentation of carotid atherosclerotic plaque and outperforms not only manual segmentation by trained readers, who did not have access to the ex vivo or histopathology data, but also three state-of-the-art deep-learning-based segmentation methods. Further, the proposed approach outperformed a strategy where the ground truth was generated without access to the high resolution ex vivo MRI and histopathology. The accurate performance of this method was also observed in the additional 23-patient dataset from a different scanner. CONCLUSION: In conclusion, the proposed method provides a mechanism to perform accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI. Further, our study shows the advantages of using high-resolution imaging and histology to define ground truth for training deep-learning-based segmentation methods

    Energy and economic analysis of building integrated photovoltaic thermal system: Seasonal dynamic modeling assisted with machine learning-aided method and multi-objective genetic optimization

    Get PDF
    Building integrated photovoltaic thermal (BIPV/T) systems offer a highly effective means of generating clean energy for both electricity and heating purposes in residential buildings. Hence, this article introduces a new BIPV/T system to optimally minimize the energy consumption of a household residential building. The meticulous design of the proposed BIPV/T system is accomplished through MATLAB/Simulink® dynamic modeling. Performance analysis for the BIPV/T system is performed under different seasonal conditions with in-depth techno-economic analyses to estimate the expected enhancement in the thermal, electrical, and economic performance of the system. Moreover, a sensitivity analysis is conducted to explore the impact of various factors on the energetic and economic performances of the proposed BIPV/T system. More so, the two-layer feed-forward back-propagation artificial neural network modeling is developed to accurately predict the hourly solar radiation and ambient temperature for the BIPV/T. Additionally, a multi-objective optimization using the NSGA-II method is also conducted for the minimization of the total BIPV/T plant area and maximization of the total efficiency and net thermal power of the system as well as to estimate the optimized operating conditions for input variables across different seasons within the provided ranges. The sensitivity analysis revealed that higher solar flux levels lead to increased electric output power of the BIPV/T plant, but total efficiency decreases due to higher thermal losses. Moreover, the proposed NSGA-II shows a feasible method to attain a maximum net thermal power and optimal total efficiency of 5320 W and 63% with a minimal total plant area of 32.89 m2 that attained a very low deviation index from the ideal solution. The levelised cost of electricity is obtained as 0.10 $/kWh under the optimal conditions. Thus, these findings offer valuable insights into the potential of BIPV/T systems as a sustainable and efficient energy solution for residential applications

    DFT, TD-DFT and Biological Activity Studies of Some Maleanilic Acid Derivatives Ligands and Their Organometallic Complexes

    Get PDF
    This study is a complementary study to our previous study that included the synthesis and characterization of some maleanilic acid derivatives ligands (L1-4) and their metal carbonyl complexes (2-4)a-d as effective compounds for cancer cell inhibition against three cancer cell lines: HCT-116 (colon cancer), HepG-2 cells (Hepatocellular cancer) and MCF-7 (breast cancer). The activity data manifested that p-nitrophenyl maleanilic acid ligand (L2) and its chromium complex (2b) showed higher inhibitory than the other complexes against the tested cancer cells. Additionally, DFT and TD-DFT studies were performed to investigate their frontier molecular orbital (FMO), optical properties, and the correlation between the structure and biological activity. The calculated optical energy gap (Eg) was in the range of 1.78- 2.13 eV, and electron cloud delocalization of HOMO/LUMO levels revealed that all complexes show effective charge separation. DFT results show a great relation between Eg values of the carbonyl complexes and their experimental biological activity. Where it was obvious that complex (2b) with the lowest (Eg) value exhibits the highest inhibition potency against cancer cells. In contrast, complex (2d) with the highest (Eg) value exhibits the lowest inhibition potency. These results translate the reverse relationship between Eg values of the complexes and the inhibition potency against cancer cells

    Present status and sustainable utilization of hydrothermal geothermal resources in Tianjin, China: a critical review

    Get PDF
    Tianjin, as one of the pioneering and most prominent cities in China, has a long history of harnessing geothermal energy. The geothermal resource available in Tianjin is primarily characterized as a low- to medium-temperature hydrothermal geothermal resource. This manuscript introduces the ongoing status and potential of geothermal utilization in China, with a particular focus on the characteristics and utilization status of geothermal resources in Tianjin, China. Moreover, the relevant strategies and challenges for cost-efficient sustainable utilization of Tianjin geothermal resources are identified. The formation parameters of heat storage characteristics of Tianjin geothermal resources are also discussed. In addition, the key paths, guidelines and challenges on how to solve the obstacles related to the geothermal resources development in Tianjin are also suggested. The summarized results indicate that the geothermal reservoirs exploited in Tianjin vary greatly, which include sandstone of Neogene Minghuazhen formation, Guantao formation, Ordovician and Cambrian and carbonate of Proterozoic Wumishan formation. Most of the exploitative geothermal resources (146 geothermal wells) in Tianjin have mainly been produced from the Wumishan formation of the Jixian system and the Guantao formation of the Neogene system. The current production capacity has been doubled, and a two-stage cascade utilization system has been established, incorporating geothermal power generation and geothermal heating. The geothermal utilization share in Tianjin is estimated to be 81.66% for heating, 16.6% for domestic hot water and 1.35% for bathing. In conclusion, notwithstanding the diversity of geothermal resources in Tianjin, it is difficult to guarantee the sustainable development and utilization of geothermal resources in Tianjin due to the unreasonable layout of geothermal wells, imbalance of production and reinjection. Hence, the integration of distributed temperature sensing and distributed strain sensing monitoring demonstrates significant promise and effectiveness in tracking water circulation and detecting flow localization problems as dynamic monitoring processes and smart thermal response tests should be recommended and established as a substantial feature required in the future utilization and development of geothermal resources in Tianjin

    DFT, TD-DFT and biological activity studies of some maleanilic acid derivatives ligands and their organometallic complexes

    Get PDF
    1564-1573This study is a complementary study to our previous study that included the synthesis and characterization of some maleanilic acid derivative ligands (L1-4) and their metal carbonyl complexes (2-4)a-d as effective compounds for cancer cell growth inhibition against three cancer cell lines: HCT-116, HepG-2 cells and MCF-7. The activity data has manifested that the p-nitrophenyl maleanilic acid ligand (L2) and its chromium complex (2b) inhibited the tested cancer cells more effectively than the other complexes. Additionally, DFT and TD-DFT studies are performed to investigate their frontier molecular orbital (FMO), optical properties, and the correlation between the structure and biological activity. The calculated optical energy gap (Eg) is in the range of 1.78- 2.13 eV, and electron cloud delocalization of HOMO/LUMO levels revealed that all complexes show effective charge separation. The DFT results show a strong relation between Eg values of the carbonyl complexes and their experimental biological activity, where it is obvious that complex (2b) with the lowest Eg value has the greatest inhibitory potency against cancer cells. In contrast, complex (2d) with the highest Eg value exhibits the lowest inhibition potency. These findings translate the inverse relationship between Eg values of the complexes and the inhibition potency against cancer cells

    Field-induced bound-state condensation and spin-nematic phase in SrCu2_2(BO3_3)2_2 revealed by neutron scattering up to 25.9 T

    Full text link
    Bose-Einstein condensation (BEC) underpins exotic forms of order ranging from superconductivity to superfluid 4 He. In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the BEC of magnon excitations. With sufficiently strong magnetic frustration, exemplified by the system SrCu2_2(BO3_3)2_2 , no clear magnon BEC is observed and the complex spectrum of multi-magnon bound states may allow a different type of condensation, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2_2(BO3_3)2_2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S=2S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches, the presence of many novel composite two- and three-triplon excitations and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2_2(BO3_3)2_2 is best understood as a condensate of bosonic Cooper pairs. Our results underline the wealth of unconventional states yet to be found in frustrated quantum magnetic materials under extreme conditions

    Crimean Congo Hemorrhagic Fever Virus and Alkhurma (Alkhumra) Virus in Ticks in Djibouti.

    Get PDF
    Crimean Congo hemorrhagic fever virus and Alkhumra virus, not previously reported in Djibouti, were detected among 141 (infection rate = 15.7 per 100, 95% CI: 13.4-18.1) tick pools from 81 (37%) cattle and 2 (infection rate = 0.2 per 100, 95% CI: 0.0-0.7) tick pools from 2 (1%) cattle, respectively, collected at an abattoir in 2010 and 2011

    Investigation and performance analysis of solar still with energy storage materials: An energy- exergy efficiency analysis

    Get PDF
    Researchers have attempted different Energy storage materials (ESM) in solar stills (SS) to improve distillate yield. In this experimental work, an attempt was made to increase the distillate yield & efficiency of SS, using good absorbing and heat transfer capacity of ESM. A comparison was made between a conventional solar still (CSS) and a solar still with energy storage materials (SSWESM) in this experiment. Different energy storage materials like black color glass ball (BCGB), black granite (BG) and white marble stone (WMS) were used in equal quantity during experimental work. CSS and SSWESM had daily distillate yield of 1.4 kg/m2 and 2.5 kg/m2, respectively. The ESM boosts water evaporation during the day and releases heat at night, resulting in a higher distillate yield than CSS. Meanwhile, the exergy efficiency (?exe) of CSS and SSWESM were 4.99% and 12.55% respectively. Also the SSWESM gives 72.6% more daily efficiency (?) than CSS.The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no. RG-21-12-03.Scopu
    corecore