14 research outputs found

    Sensory Feedback and Interactivity: Enhancing Motivation and Engagement for VR Stroke Rehabilitation

    Get PDF
    Stroke is a condition that happens when the brain is cut off from blood supply. Patients are at risk of disabilities. To help patient recover, gain mobility, and independence, rehabilitation starts as soon as possible. Unfortunately for some patients, they are forced to undergo long-term rehabilitation period. Since the activities during therapy are repetitive, many patient losses their motivation to continue therapy thus unable to recover. Virtual reality has been found to increase motivation for stroke rehabilitation. Its key elements, especially sensory feedback and interactivity have been found to increase motivation and engagement especially when applied to gamification. However, practitioners in related field have raised concern on the relevancy of some VR elements used for rehabilitation. Inappropriate elements may not be effective for the program; thus, requires further investigation. This paper explores various elements that could encourage motivation, bring better engagement, and enhance task performance of stroke patients via VR-based rehabilitation. A literature survey was conducted. The findings signal for the importance of sensory feedback and interactivity when used in VR environment for stroke patients in their rehabilitation programme

    SpecSeg Network for Specular Highlight Detection and Segmentation in Real-World Images

    No full text
    Specular highlights detection and removal in images is a fundamental yet non-trivial problem of interest. Most modern techniques proposed are inadequate at dealing with real-world images taken under uncontrolled conditions with the presence of complex textures, multiple objects, and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a wide variety of real-world images independent of the number, colour, or type of illuminating source, we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly affected by specular highlights with a high degree of precision, as shown by comparison with the state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested using a large selection of real-world images with highly encouraging results

    Motorcyclists Safety System to avoid Rear End Collisions based on Acoustic Signatures

    No full text
    International audienceIn many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents

    Studying the Response of Drivers against Different Collision Warning Systems: A Review

    No full text
    International audienceThe number of vehicle accidents is rapidly increasing and causing significant economic losses in many countries. According to the World Health Organization, road accidents will become the fifth major cause of death by the year 2030. To minimize these accidents different types of collision warning systems have been proposed for motor vehicle drivers. These systems can early detect and warn the drivers about the potential danger, up to a certain accuracy. Many researchers study the effectiveness of these systems by using different methods, including Electroencephalography (EEG). From the literature review, it has been observed that, these systems increase the drivers' response and can help to minimize the accidents that may occur due to drivers unconsciousness. For these collision warning systems, tactile early warnings are found more effective as compared to the auditory and visual early warnings. This review also highlights the areas, where further research can be performed to fully analyze the collision warning system. For example, some contradictions are found among researchers, about these systems' performance for drivers within different age groups. Similarly, most of the EEG studies focus on the front collision warning systems and only give beep sound to alert the drivers. Therefore, EEG study can be performed for the rear end collision warning systems, against proper auditory warning messages which indicate the types of hazards. This EEG study will help to design more friendly collision warning system and may save many lives

    Blind-Spot Collision Detection System for Commercial Vehicles Using Multi Deep CNN Architecture

    No full text
    Buses and heavy vehicles have more blind spots compared to cars and other road vehicles due to their large sizes. Therefore, accidents caused by these heavy vehicles are more fatal and result in severe injuries to other road users. These possible blind-spot collisions can be identified early using vision-based object detection approaches. Yet, the existing state-of-the-art vision-based object detection models rely heavily on a single feature descriptor for making decisions. In this research, the design of two convolutional neural networks (CNNs) based on high-level feature descriptors and their integration with faster R-CNN is proposed to detect blind-spot collisions for heavy vehicles. Moreover, a fusion approach is proposed to integrate two pre-trained networks (i.e., Resnet 50 and Resnet 101) for extracting high level features for blind-spot vehicle detection. The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods. Both approaches are validated on a self-recorded blind-spot vehicle detection dataset for buses and an online LISA dataset for vehicle detection. For both proposed approaches, a false detection rate (FDR) of 3.05% and 3.49% are obtained for the self recorded dataset, making these approaches suitable for real time applications

    Classification of EEG Signals Based on Pattern Recognition Approach

    No full text
    Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy

    Underactuated nonlinear adaptive control approach using U-Model incorporated with RBFNN for multivariable underwater glider control parameters

    Get PDF
    2482-2492Underwater glider platform represents the maturing technology with a large cost saving over current underwater sampling process. It can survey and monitor the sea environment cost-effective manner combining survey capabilities, simultaneous water sampling and environmental data gathering capacities. It can perform a wide range of fully automated monitoring data measurement over an extended period of time. This paper will focus on the design of multivariable underactuated nonlinear adaptive control using U-model methodologies. Underwater glider control, modelling and identification approach was reviewed in order to formulate the design, development and control approach of underwater glider development using multivariable adaptive U-model nonlinear control approach. U-model methodology simplifies the control synthesis with the influence of the uncertainties and external disturbances by selecting appropriate control structures. Most of the autonomous underwater vehicle (AUV) neglected the coupling effect of the dynamics during process modelling while U-model enables to include the coupling effect using the inverse Jacobian matrix. U-model incorporated with RBFNN enhance the adaptive nonlinear control synthesis. Thus contributes towards the underactuated nonlinear adaptive control development and process modelling

    Gamification, sensory feedback, adaptive function on virtual reality rehabilitation: a brief review

    No full text
    Feedback is often linked to rewards element in gamification to motivate users. However, there are more to feedbacks than rewards elements. Feedback can provide user with useful information and at the same time feedback from user are useful for an adaptive system. There has been lack of empirical basis for feedback design to maintain motivation in virtual reality environment especially for the less cognitively abled population such as stroke patients. This paper presents a review study on gamification, sensory feedback, and adaptive function with regards to the use of virtual reality in stroke rehabilitation. A further analysis was conducted on those work that involves gamification and virtual reality design principles. One major finding is the dominant use of visual feedback in the design as compared to auditory and haptics despite their potentials to encourage motivation and engagement. The literature findings will be used to inform future empirical research on virtual reality design for stroke rehabilitation. The idea is to investigate the effect of sensory feedback and the added value on motivation and engagement. Some plans on how to conduct such a study will be illustrated.This work was supported by French government funding managed by the National Research Agency under the Investments for the Future program (PIA) grant ANR-21-ESRE-0030 (CONTINUUM)

    Exploring EEG Effective Connectivity Network in Estimating Influence of Color on Emotion and Memory

    No full text
    Color is a perceptual stimulus that has a significant impact on improving human emotion and memory. Studies have revealed that colored multimedia learning materials (MLMs) have a positive effect on learner’s emotion and learning where it was assessed by subjective/objective measurements. This study aimed to quantitatively assess the influence of colored MLMs on emotion, cognitive processes during learning, and long-term memory (LTM) retention using electroencephalography (EEG). The dataset consisted of 45 healthy participants, and MLMs were designed in colored or achromatic illustrations to elicit emotion and that to assess its impact on LTM retention after 30-min and 1-month delay. The EEG signal analysis was first started to estimate the effective connectivity network (ECN) using the phase slope index and expand it to characterize the ECN pattern using graph theoretical analysis. EEG results showed that colored MLMs had influences on theta and alpha networks, including (1) an increased frontal-parietal connectivity (top–down processing), (2) a larger number of brain hubs, (3) a lower clustering coefficient, and (4) a higher local efficiency, indicating that color influences information processing in the brain, as reflected by ECN, together with a significant improvement in learner’s emotion and memory performance. This is evidenced by a more positive emotional valence and higher recall accuracy for groups who learned with colored MLMs than that of achromatic MLMs. In conclusion, this paper demonstrated how the EEG ECN parameters could help quantify the influences of colored MLMs on emotion and cognitive processes during learning.</p
    corecore