89 research outputs found

    Convolutional neural networks for the shape design of a magnetic core for material testing: Forward and inverse approaches

    Get PDF
    In this paper CNNs are used for solving an optimization problem with two different approaches: CNN is used as a surrogate model of the forward problem, inserted in an optimization loop governed by a genetic algorithm, in the first approach, while a CNN is trained for solving directly the inverse problem in the second approach. The case study is the shape design of a magnetic core used for material testing

    Neural metamodelling of fields: Towards a new deal in computational electromagnetics

    Get PDF
    In computational electromagnetism there are manyfold advantages when using machine learning methods, because no mathematical formulation is required to solve the direct problem for given input geometry. Moreover, thanks to the inherent bidirectionality of a convolutional neural network, it can be trained to identify the geometry giving rise to the prescribed output field. All this puts the ground for the neural meta-modeling of fields, in spite of different levels of cost and accuracy. In the paper it is shown how CNNs can be trained to solve problems of optimal shape synthesis, with training data sets based on finite-element analyses of electric and magnetic fields. In particular, a concept of multi-fidelity model makes it possible to control both prediction accuracy and computational cost. The shape design of a MEMS design and the TEAM workshop problem 35 are considered as the case studies

    Optimization of Compensation Network for a Wireless Power Transfer System in Dynamic Conditions: A Circuit Analysis Approach

    Get PDF
    The paper is focused on the optimization of the compensation network of a wireless power transfer system (WPTS) intended to operate in dynamic conditions. A laboratory prototype of a WPTS has been taken as a reference in this work, allowing for the experimental data and all the numerical models here presented to reproduce the configuration of the existing device. The numerical model has been used to perform FEM analysis with variable relative positions of the emitting and receiving coil to simulate the movement in a 'recharge while driving' condition. Inductive lumped parameters, i.e., self and mutual inductances computed from FEM results, have been used for the optimal design of the compensation network necessary for the WPTS operation. The optimal design of the resonance circuits has been developed by defining objective functions, aiming to achieve these goals: transmitted power must be as constant as possible when the vehicle is in movement and the electrical efficiency must be satisfactory high in most of the coupling conditions. The performances of the optimized network are finally compared and discussed

    A deep learning approach to improve the control of dynamic wireless power transfer systems

    Get PDF
    In this paper, an innovative approach for the fast estimation of the mutual inductance between transmitting and receiving coils for Dynamic Wireless Power Transfer Systems (DWPTSs) is implemented. To this end, a Convolutional Neural Network (CNN) is used; an image representing the geometry of two coils that are partially misaligned is the input of the CNN, while the output is the corresponding inductance value. Finite Element Analyses are used for the computation of the inductance values needed for CNN training. This way, thanks to a fast and accurate inductance estimated by the CNN, it is possible to properly manage the power converter devoted to charge the battery, avoiding the wind up of its controller when it attempts to transfer power in poor coupling conditions

    Cost-effective optimal synthesis of the efficiency map of permanent magnet synchronous motors

    Get PDF
    In the paper an original approach to efficiency map optimal synthesis is presented. A permanent magnet motor, working as controlled AC motor of synchronous type (PMSM), is selected as a case study. The first target of this research is to derive a lumped-parameter model of the motor (low-fidelity model), validated by magnetic field analysis (high-fidelity model). In turn, the end target is these two models application in a cost-effective optimisation procedures, where the goal is to identify the motor geometry maximizing the map area which is encompassed by a prescribed value for the motor efficiency

    Optimal shape design of a class of permanent magnet motors in a multiple-objectives context

    Get PDF
    Purpose: This paper aims to deal with the optimal shape design of a class of permanent magnet motors by minimizing multiple objectives according to an original interpretation of Pareto optimality. The proposed method solves a many-objective problems characterized by five objective functions and five design variables with evolution strategy algorithms, classically used for single- and multi-objective (two objective functions) optimization problems. Design/methodology/approach: Two approaches are proposed in the paper: the All-Objectives (AO) and the Many-Objectives (MO) optimization approach. The former is based on a single-objective optimization of a preference function, i.e. a normalized weighted sum. In contrast, in the MO a multi-objective optimization algorithm is applied to the minimization of a weight-free preference function and simultaneously to a maximization of the distance of the current solution from the prototype. The optimizations are based on an equivalent circuit model of the Permanent Magnet (PM) motor, but the results are assessed by means of finite element analyses (FEAs). Findings: An extensive study of the solutions obtained by means of the different optimization approaches is provided by means of post-processing analyses. Both the approaches find non-dominated solutions with respect to the prototype that are substantially improving the initial solution. The points of strength along with the weakness points of each solution with respect to the prototype are analysed in depth. Practical implications: The paper gives a good guide to the designers of electric motors, focussed on a shape design optimization. Originality/value: Considering simultaneously five objective functions in an automated optimal design procedure is challenging. The proposed approach, based on a well-known and established optimization algorithm, but exploiting a new concept of degree of conflict, can lead to new results in the field of automated optimal design in a many-objective context

    Numerical methods for MEMS design: Automated optimization

    No full text
    As stated in Sect. 10.3, the problem of identifying or reconstructing a given quantity, based on known data e.g. measurements, is called an inverse problem. Loosely speaking, an inverse problem is one in which an effect is measured and the cause of it is to be determined

    Numerical case studies: Forward problems

    No full text
    Electrostatic micromotors were the first MEMS which had been designed and prototyped exploiting Silicon integrated technology

    CNN-Based Surrogate Models of the Electrostatic Field for a MEMS Motor: A Bi-Objective Optimal Shape Design

    No full text
    The use of a convolutional neural network to develop a surrogate model of the electric field in MEMS devices is proposed. An electrostatic micromotor is considered as the case study. In particular, different CNNs are trained for the prediction of the torque profile and the maximum torque value at a no-load condition and the radial force which could arise in case of the radial displacement of the rotor during motion. The proposed deep learning approach is able to predict the abovementioned quantities with a low error and, in particular, it allows for a decrease in the computational cost, especially in case of optimization problems based on FE models
    corecore