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Abstract—In computational electromagnetism there are manyfold advantages when using machine learning methods, because 

no mathematical formulation is required to solve the direct problem for given input geometry. Moreover, thanks to the inherent 

bidirectionality of a convolutional neural network, it can be trained to identify the geometry giving rise to the prescribed output 

field. All this puts the ground for the neural meta-modeling of fields, in spite of different levels of cost and accuracy. In the paper it 

is shown how CNNs can be trained to solve problems of optimal shape synthesis, with training data sets based on finite-element 

analyses of electric and magnetic fields. In particular, a concept of multi-fidelity model makes it possible to control both prediction 

accuracy and computational cost. The shape design of a MEMS design and the TEAM workshop problem 35 are considered as the 

case studies. 
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1. Introduction 

In recent years, machine learning has been increasingly considered in engineering science. Electromagnetics is no 
exception and deep learning techniques begin to be used for field analysis purpose; for instance, a coupled field problem is 
solved in [1], while the simulation of Maxwell’s equations are reported in [2],[3]. In particular, the impressive developments in 
the area of machine learning and big data have put the ground for pattern recognition in field problems. In this respect, the use 
of Deep Neural Networks (DNN) [4] might substantially accelerate the solution of field analysis problems. Accordingly, the 
possibility of applying a DNN models to field analysis and synthesis is here considered: in particular, a bitmap approach, 
which describes a device geometry as a set of pixels, is proposed. The topology of the selected network resembles that for 
image segmentation purposes and it is easily trained by means of a set of Finite-Element (FE) analyses: this way, the ground 
information is amenable to electric and magnetic field distributions over the input domains, simulated from classical FE 
solvers. Therefore, a physics-informed background makes the neural surrogate reliable in spite of different levels of cost and 
accuracy. A particularly interesting and promising architecture is the one of a Generative Adversarial Network (GAN) [5], 
composed of two interconnected Convolutional Neural Networks CNNs, named generator and discriminator, respectively. In 
fact, GANs have already been successfully applied in many areas, like e.g. image generation and image super-resolution. In 
electromagnetics, several works show their use in the area of magnetic resonance imaging [6],[7], antenna Q-factor 
characterization [8], scattering problems [9]. 

The paper is organized as follows: in Section 2 the general concept of surrogate modelling is presented, while Section 3 
shows possible perspectives in field analysis and synthesis open by the use of CNNs; reference is made to the optimal shape 
synthesis of a Micro Electro Mechanical System MEMS device. In turn, the focus of Sections 4 and 5 is on a GAN architecture 
with a case study inspired to the TEAM workshop problem 35. Eventually, in Sections 6 and 7 results are presented and 
discussed. 

 

2. Surrogate Modeling with CNNs 

Recently, deep learning techniques have been used to build surrogate models for field analysis of electromagnetic devices 

[10],[11]. In this respect, deep learning (DL) approaches are particularly suited for developing surrogate models in 

electromagnetic analysis. In fact, DL models like deep neural networks (DNN), are capable of dealing with high-resolution 

images as input and output, therefore enabling to directly handle the bitmaps describing geometry and field in a 

electromagnetically complex scenario. In particular, Convolutional Neural Networks (CNNs) are neural networks which 

allow to evaluate a field quantity (either a value or a vector of values like e.g. a field distribution), starting from an image 

[12]; to this end, transposed 2D deconvolution layers are conveniently used. The training of this class of networks is usually 

based on numerical analyses and in particular the Finite Element (FE) method is used. Once a neural network is trained, it can 

be used as a surrogate model and placed in an optimization loop. This way, the computational burden is limited to the net 

training, while the evaluation of the field quantities during the optimization loop is rather inexpensive. Another fascinating 

and innovative way to use DNNs for solving inverse problems is to invert the network previously trained for solving the 

associated direct problem: an application in material property identification can be found e.g. in [13].  
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3. Field analysis and synthesis with CNNs 

It appears that more and more Machine Learning (ML) approaches are being exploited as a tool for the resolution of 

electromagnetic (EM) problems. The advantages of using ML are at least twofold:  

i) first, no mathematical formulation is required to implement the problem solver, as Deep Neural Networks (DNN) simply 

require well suited data sets for their training; 

ii) next, once trained, DNNs can solve an EM problem in an almost negligible time with respect to classical numerical 

methods: this puts the ground for equation-less, and so FEM-less, models of analysis problems. 

An additional advantage of using ML is the possibility to exploit the inherent bidirectionality of this approach. In fact, 

DNN’s can be trained in view of a threefold scope: 

- to promptly solve the direct electromagnetic problem for given input geometry, sources and material properties; 

- or, alternatively, to look for the geometry giving the prescribed output field with assigned sources and material 

properties; 

- or, finally, to look for field sources or material properties in an assigned geometry. 

This, in turn, puts the ground for an optimization-less approach to the automated synthesis of electromagnetic devices. The 

whole scenario is tempting and surely deserves serious consideration in the community; at the time being, however, the 

training cost of a network is still a bottleneck in many EM applications, and future work should be addressed towards 

techniques mitigating the computational burden.  

For the sake of an example, let an electrostatic micromotor exhibiting 18 stator electrodes, 6 rotor teeth and 60 µm outer 

rotor radius, be considered. The stator electrodes are supplied by a three-phase system of square voltages while the rotor 

potential is floating. A convolutional neural network (CNN) composed of 18 layers is used for implementing the surrogate 

model [14]; in fact, the architecture of the selected network resembles that of an image decoder/decompressor. In order to train 

a net, a 2D Finite Element Model (FEM) of the motor is implemented; the driving torque T at no-load condition is computed 

over a rotation angle of 60 degrees (pole pitch), and its maximum value Tm is considered.  

The rotor geometry can vary depending on three parametric variables x=[x1, x2, x3]= [R1, α, β] which are the inner rotor 

radius and two angles defining the geometry of the rotor tooth, respectively. Two classes of problems have been solved: in 

terms of forward modelling, given a device geometry, identify the field pattern (CNN-1) or compute the torque profile (CNN-

2) as shown in Fig.1. In contrast, in terms of inverse modelling, given the prescribed torque profile, find the relevant device 

geometry (CNN 3) as depicted in Fig. 2. In particular, CNN-3 is the conjugate network of CNN-2. 

 

 

Fig. 1 – CNN-based surrogate model of forward problems: given a micromotor geometry, find the relevant field pattern (up) or, alternatively, find the 
torque profile (down). 

 

Fig. 2 – CNN-based surrogate model of an inverse problem: given a prescribed torque profile, find the relevant micromotor geometry. 

 

The aforementioned example of the MEMS motor is intentionally a conceptual one in order to give the reader an idea how 

to utilize machine learning methods to solve problems of optimal shape synthesis. 



A general strategy in order to reduce the computational burden and still keep a good accuracy in the predicted values, 

could be the use of a multi-fidelity approach: a network is trained first with a low-fidelity model; then, it is treated as a pre-

trained network and subsequently specialized with the high-fidelity model. This way, the pre-trained network has a low, or 

moderate, computational cost because of the low-fidelity model, while the subsequent training with high-fidelity model is not 

very expensive because a reduced set of samples is used for training the network.  

Formally, a multi-fidelity surrogate fuses information from different models based on a space mapping  which relates 

the high- (xH) and the low-fidelity (xL) variable spaces, namely  

 
                (1) 

 

such that 

                        (2) 

 

where fL and fH are the low and the high fidelity models, respectively. 

For the sake of an example, again referring to the previous case study, the high-fidelity field model consists of nH=101 FE 

analyses, where a step of H=0.6 degrees is considered for the rotation over 60 degrees; in contrast, nL=26 FE analyses are 

performed for the low-fidelity field model, where a step of L=2.4 degrees is considered for rotation. 

The multi-fidelity approach may consist of training a CNN with low-fidelity model and then refining the network with a set 

of high-fidelity samples. This new approach allows to obtain an accuracy close to the one obtained with the high-fidelity 

model, but the computational cost is far lower: about 30% of FE analyses less than using the high-fidelity approach. More 

details are given in [14]. 

This way, in general, a physics-informed background makes the neural surrogate reliable in spite of different levels of cost 

and accuracy. The main practical goal of using this kind of surrogate models is their speed which makes them suitable for 

optimization loops.  

4. Generative Adversarial Networks 

A generative adversarial network (GAN) is composed of two networks, i.e.  a generator (G) and a discriminator (D). 

Given a training data set characterized by a probability density function PDFt , network D is trained in such a way to 

maximize the probability of correctly classifying real data and artificial data; in turn, network G is trained in such a way to 

maximize the probability of D to classify artificial data as real data. 

The final goal is to synthesise G as a good estimator of PDFt  : as a remarkable result, it can be mathematically proven that 

the goal is achieved when the probability density function featuring the generator PDFg is equal to the one of the data set, i.e. 

PDFg  = PDFt. At this point in time, G is able to generate  an optimal solution in an inexpensive way. 

In this paper, a GAN is trained exploiting the data derived from a multi-objective optimization problem solved with 

NSGA-II algorithm; in other words, a subset of the solutions originated during the optimization procedure form the data set. 

This way, both dominated and non-dominated solutions are supplied to network D: the former are labelled as real while the 

latter are labelled as fake. As far as the G network is concerned, it has to be triggered by means of an appropriate signal: here 

it has been decided to utilize a pulse of Gaussian white noise as the trigger which is a usual choice in the literature; in turn, 

the output of network G is an (ideally) non-dominated solution in the design space. This puts the ground for densifying the 

Pareto optimal set, originally approximated by means of the preliminary optimization procedure, at a zero marginal cost. 

Eventually, a feedforward neural network (multilayer perceptron) is trained using the same data set of the GAN, in order to 

approximate the forward problem solution. This allows to estimate in an inexpensive way the objectives function values 

corresponding to the non-dominated solutions generated by network G, without the need of additional field analyses. In Fig. 3 

the implemented architecture is shown. 

 

 
Fig. 3 – Architecture of the implemented GAN. 



 

As far as the architecture of the two networks is concerned, the Generator is implemented with a CNN characterized by 13 

layers, in which 3 blocks can be highlighted. Each block is composed of a transposed convolutional 2D layer [15], a batch 

normalization layer [16] and a Rectified Linear Unit (ReLU) function [4], as shown in Table I. 

 
Table I - Generator architecture 

Input     Feature input layer (size 10) 

     Project and Reshape Layer (size 4×4×512) 

Block 1     Transposed Convolution 2D (size 3×3 × 128) 

    Batch Normalization  

    ReLU activation function  

Block 2     Transposed Convolution 2D (size 3×3×64) 

    Batch Normalization  

    ReLU activation function             

Block 3     Transposed Convolution 2D (size 3×3×32) 

    Batch Normalization  

    ReLU activation function      

    Transposed Convolution 2D (size 14×32×1), output size 10×1×1 

     Tanh layer  

 

Specifically, the Generator is triggered by a vector of random numbers, with a Gaussian distribution, and then a reshape 

layer originating a 4×4×512 matrix is used. Three blocks, composed of Transposed Convolution 2D layer, Batch 

Normalization layer and the Rectified Linear Unit activation function, with a number of filters decreasing from block to 

block, follow. Finally, a Transposed Convolution 2D layer with a suitable filter size allows to obtain a 10×1×1 matrix, which 

is in input to the Hyperbolic Tangent activation layer. As output of the Generator a 10×1×1 matrix with values in the range [-

1,1] is obtained.  

 

In turn, the Discriminator is implemented with a CNN characterized by 14 layers, in which 3 blocks of the same kind 

described above can be highlighted, as shown in Table II. 
 

 
Table II - Discriminator architecture 

Input     Image input layer (10×1×1) 

      Dropout (20% probability) 

     Convolution 2D (size 3×3×64) 

     Leaky ReLU activation function 

Block 1     Convolution 2D (size 3×3 ×128) 

    Batch Normalization  

    Leaky ReLU activation function 

Block 2     Convolution 2D (size 3×3×256) 

    Batch Normalization  

    Leaky ReLU activation function 

Block 3     Convolution 2D (size 3×3×512) 

    Batch Normalization  

    Leaky ReLU activation function 

    Convolution 2D (size 1×1×1) 

 

The size of the mini-batch processed by the GAN is set to 16. A mini-batch is a subset of the training set that is used to 

evaluate the gradient of the loss function and update the weights; one different mini-batch subset is used at each iteration. 

The learning rate, i.e. the amount that the weights are updated during training, of the Generator and Discriminator is set to 

10
-4

 and 2 10
-3

, respectively.  

 

5. TEAM Workshop Problem 35 

The multi-objective Pareto optimization of a solenoid winding is considered as the case study [17-19]. The winding is 

composed of twenty series-connected circular turns, with the width of each turn w = 1 mm and the height h = 1.5 mm, 

carrying a current of 3 A (corresponding to a current density of 2 A mm
-2

). Assuming a symmetric distribution with respect to 

the plane z=0, only ten turns are considered in the model (Fig. 4a). 



A magnetic field problem is numerically solved using a finite-element axisymmetric model subject to the following boundary 

conditions: tangential flux lines at r=0 and normal flux lines at z=0. The magnetic field pattern corresponding to a given 

geometry of the winding is shown in Fig. 4a, while a detail of a typical mesh is shown in Fig. 4b. 

 

  
(a) (b) 

 
Fig. 4 - Geometry of the winding, control region and flux lines (a), a detail of the mesh (b). 

 

The optimization problem consists of identifying the distribution of turn radii such that the field uniformity in a controlled 

subregion  around the solenoid axis is maximum and, simultaneously, the power loss in the winding is minimum.  

To this end, the radii R1,..., Ri,...,R10 of the ten turns (Fig. 4) are assumed to be the design variables, while the two objective 

functions can be cast as follows 

0j
n,1j

1 BBsupf
p




      (3) 

with np=66 sample points uniformly spaced inside  and B0=2 mT, and 





tn

1i

i2 Rf  with nt=10.       (4) 

In (3), Bj is the z component of B field at the j-th sample point, while Bo is the relevant prescribed value. In turn, function f2, 

which computes the sum of the turn radii, is amenable to the total ohmic resistance - and so power losses - of the winding. 

Both objective functions must be simultaneously minimised. 

The subject of maximising the field uniformity in controlled subregion  by means of bi-objective formulation (3)-(4) is 

deeply discussed in [18]-[19] where the benchmark is defined and solved. Here, the attention is focused on a GAN-inspired 

approach to the solution of the benchmark with a specific scope, i.e. densifying a subregion of the objective space spanned by 

(f1, f2) when design vector [R1,…, Rk,…,R10] varies in a feasible region. 

In this respect, as far as objective functions (3)-(4) are concerned, the following remark can be put forward: function f2 is 

inexpensive to calculate because it can be analytically computed based on the shape of the turn; in contrast, function f1 needs 

a field analysis for the given winding geometry. Hence, in order to evaluate the function f1 in a fast way, a classical feed-

forward fitting neural network (FFNN) is implemented. It is composed of 6 layers with [20, 15, 5, 2, 2] neurons, respectively, 

and one output layer. The activation function used for all layers is the logistic sigmoid activation function, which sets the 

output in the range [0,1]. The whole set of solutions obtained with NSGA-II method (black dots in Fig. 5), based on FE 

analyses, is used for training the net, considering the 70% of samples for the training set, 15% for the validation set and 15% 

for the test set. For training the network the Levenberg-Marquardt method is used. For evaluating the neural network results, 

true and predicted points are plotted in Fig. 5 



 
Fig. 5 – True points (NSGA-II results): black dots, predicted points (FFNN): red circles. 

  

 

 

In turn, in order to train the GAN, a subset of the solutions originating during the optimization process based on NSGA-II 

algorithm are used, i.e. the Pareto front solutions along with the neighboring solutions. The relevant Pareto front is 

highlighted in Fig. 6a, where all the individuals processed during the optimization are represented with black dots, while the 

78 individuals approximating the Pareto front are represented with red stars. 

 
 

(a) (b) 

Fig. 6 - NSGA-II results: individuals processed during the optimization, black dot and approximation of the Pareto front, red star (a), the solutions 
considered for training the GAN are highlighted, red cross (b). 

 

Because the number of solutions in the training set substantially affects the convergence of the GAN, a set of solutions larger 

than the Pareto front subset is used for training the GAN. In particular, a set of solutions close to the Pareto front has been 

selected. Specifically, considering a single Pareto optimal solution as the reference, a set of the k solutions closest to the 

reference one, are taken; subsequently, this procedure is repeated for each Pareto optimal solution. These solutions x* are 

considered to be close to the Pareto optimal solutions based on the Minkowski’s distance metric dm of order p=2, namely 

 

      
  

       
 

   

       
 
 

 
    

 
  

      (5) 

 

with n=2 number of objectives and p=2. According to (5), taking k=400 and discarding the duplicate solutions, a cloud of 624 

points is obtained. It is worth noting that the 624 points were originated by the FE solver during the NSGA-II optimisation. 

As can be noted in (5), each component (f1 and f2, respectively) of the distance between two points in the objective function 

space is normalized by the maximum value fmax_i of the relevant objective function. 

The set of solutions so found is represented in Fig. 6b with red cross. 

 



6. Results 

 

Because the discriminator learns to classify input vectors as either "real" i.e. belonging to the training set of solutions or 

"generated" by the Generator, the output of the Discriminator corresponds to the probability    that the input vectors belong to 

the class "real". The Generator score sG is the mean of the probabilities corresponding to the Discriminator output for the 

generated images: 

 

sG=         ,         (6) 

 

where     array contains the probabilities for the generated images to be classified as “real”. 

 

Given that 1−   is the probability of a vector belonging to the class "generated", the Discriminator score is the mean of the 

probabilities of the input vectors belonging to the correct class: 

 

sD=
 

 
          

 

 
                 (7) 

 

where     contains the discriminator output probabilities for the real vectors Eq. (7) is under the assumptions that the numbers 

of real and generated vectors passed to the discriminator are equal. 

 

The GAN was trained for 5,000 epochs with 624 samples. By definition, one epoch lasts when an entire dataset is passed 

forward and backward through the neural network once. Since one epoch is too big to feed to the computer at once, the 

dataset is divided in several smaller batches: 64 samples per batches are here considered. 

 

The history of Generator and Discriminator scores during the training are shown in Fig. 7a. 

 

 

 
(a) (b) 

Fig. 7 - GAN results: history of scores of Generator and Discriminator (a) and solutions generated by the trained GAN, grey circles, NSGA-II solutions 
used for GAN training, red dots, whole set of NSGA-II individuals, black dots (b). 

 

After Fig. 7a it can be noted that both Generator and Discriminator explore different configurations - in particular this 

happens in the first half of the training history - and eventually a trend towards convergence is observed. In particular, the 

Discriminator score is around 0.5 and it is a good value, because it means that the Discriminator is no longer able to detect the 

difference between real and generated vectors. 

After the GAN converged, the trained Generator is used by itself for generating 1,000 vectors, starting from 1,000 vectors 

of random numbers. Each generated vector belongs to the design space and contains the set of 10 radii defining the solenoid 

geometry. These vectors are then evaluated in the objective space with the FFNN previously trained for the computation of 

the f1 function, while f2 function is analytically computed. The results are shown in Fig. 7b; in particular the grey circles are 

the points generated by the Generator, mapped into the objective space through the FFNN. 

The nice feature is that grey circles are inexpensively generated; this way, thousands of points can be generated with no 

extra cost for discovering new solutions. Consequently, the objective space and in particular the region of interest (red dots) is 

enriched of points and arbitrarily densified. This makes it possible to obtain thousands of solutions, i.e. different “good” 

geometries, which all belong to the area of interest at zero marginal cost. 



7. Conclusion 

 According to the recent literature, CNNs exhibit good capabilities to work as surrogate models in electromagnetics, 

mimicking both field analysis and field synthesis by means of equation-less models. In fact, deep learning models are capable 

of dealing with high resolution images as input and output, thus enabling to directly handle the bitmaps describing geometry 

as well as field distribution of a complex device. On the one hand, in fact, the bitmap like approach allows for a much more 

flexible description of the design space in contrast to classical parametric approaches which are based on a finite-dimensional 

space; on the other hand however, the bitmap like approach substantially increases the dimensionality of the design space. To 

fix the problem, a possible remedy is the use of a variable fidelity model which makes it possible to decrease the 

computational cost subject to a prescribed accuracy. In turn, a GAN-inspired approach has proven to be an effective method 

for synthesising an almost perfect twin model of the solution space, which enables to discover new solutions at zero marginal 

cost. All this puts the ground for a new deal in computational electromagnetics.  
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