14 research outputs found

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Multi-objective volleyball premier league algorithm

    Get PDF
    This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball Premier League (MOVPL) algorithm for solving global optimization problems with multiple objective functions. The algorithm is inspired by the teams competing in a volleyball premier league. The strong point of this study lies in extending the multi-objective version of the Volleyball Premier League algorithm (VPL), which is recently used in such scientific researches, with incorporating the well-known approaches including archive set and leader selection strategy to obtain optimal solutions for a given problem with multiple contradicted objectives. To analyze the performance of the algorithm, ten multi-objective benchmark problems with complex objectives are solved and compared with two well-known multiobjective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on multi-objective benchmark problems. In addition, the MOVPL algorithm has provided promising results on well-known engineering design optimization problems

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Energy-efficient multi-objective flexible manufacturing scheduling

    No full text
    This paper presents a novel scheduling of a resource-constrained Flexible Manufacturing System (FMS) with consideration of the following sub-problems: (i) machine loading and unloading, (ii) manufacturing operation scheduling, (iii) machine assignment, and (iv) Automated Guided Vehicle (AGV) scheduling. In the proposed model, both the AGV and machinery are considered as the required resources. Energy efficiency of AGVs has been studied in order to improve environmental sustainability in terms of a linear function, which is based on load and distance, accordingly. Because of the NP-hard characteristics of the problem, a modified multi-objective particle swarm optimization (MMOPSO) has been developed for solving the model and compared with the classic version of the multi-objective particle swarm optimization (MOPSO) algorithm in terms of five performance metrics. Finally, the results are evaluated by the application of a multi-criteria decision-making (MCDM) algorithm according to which the MMOPSO outperforms the MOPSO.Web of Science283art. no. 12461

    Applying Monte Carlo Simulation to Measuring Risk Factors in Information Technology Projects

    No full text
    Planning and decision making are the basic duties of a project manager which without them it is almost impossible to reach the project goals. In planning and decision making process, firstly, risk factors should be identified and after that their impacts and probabilities should be measured. Therefore, risk management is a critical part of the project management and, ignorance of risk factors is one of the primary causes for the project to be failed. The purpose of this paper is to measure risk factors of IT projects .In this research, 13 main factors are identified, then, based on literature and experts opinion these factors are categorized in 3 groups (project factors, software factors, and internal and external organizational factors). Finally, using Monte Carlo simulation, risk associated with each factor is quantified. As the results of this research show “recourse” is the main factor for IT project. To be effective, managers need to consider suitable strategies in order to decrease the dangers related to the possible risks in the resources

    Hybrid improved cuckoo search algorithm and genetic algorithm for solving Markov-modulated demand

    No full text
    One of the fundamental problems in supply chain management is to design the effective inventory control policies for models with stochastic demands because efficient inventory management can both maintain a high customers’ service level and reduce unnecessary over and under-stock expenses which are significant key factors of profit or loss of an organization. In this study, a new formulation of an inventory system is analyzed under discrete Markov-modulated demand. We employ simulation-based optimization that combines simulated annealing pattern search and ranking selection (SAPS&RS) methods to approximate near-optimal solutions of this problem. After determining the values of demand, we employ novel approach to achieve minimum cost of total SCM (Supply Chain Management) network. In our proposed approach, hybrid improved cuckoo search algorithm (ICS) and genetic algorithm (GA) are presented as main platform to solve this problem. The computational results demonstrate the effectiveness and applicability of the proposed approach

    An improved volleyball premier league algorithm based on sine cosine algorithm for global optimization problem

    No full text
    Volleyball premier league (VPL) simulating some phenomena of volleyball game has been presented recently. This powerful algorithm uses such racing and interplays between teams within a season. Furthermore, the algorithm imitates the coaching procedure within a game. Therefore, some volleyball metaphors, including substitution, coaching, and learning, are used to find a better solution prepared by the VPL algorithm. However, the learning phase has the largest effect on the performance of the VPL algorithm, in which this phase can lead to making the VPL stuck in optimal local solution. Therefore, this paper proposed a modified VPL using sine cosine algorithm (SCA). In which the SCA operators have been applied in the learning phase to obtain a more accurate solution. So, we have used SCA operators in VPL to grasp their advantages resulting in a more efficient approach for finding the optimal solution of the optimization problem and avoid the limitations of the traditional VPL algorithm. The propounded VPLSCA algorithm is tested on the 25 functions. The results captured by the VPLSCA have been compared with other metaheuristic algorithms such as cuckoo search, social-spider optimization algorithm, ant lion optimizer, grey wolf optimizer, salp swarm algorithm, whale optimization algorithm, moth flame optimization, artificial bee colony, SCA, and VPL. Furthermore, the three typical optimization problems in the field of designing engineering have been solved using the VPLSCA. According to the obtained results, the proposed algorithm shows very reasonable and promising results compared to others
    corecore