84 research outputs found

    Pediatric intracranial dural arteriovenous fistulas: age-related differences in clinical features, angioarchitecture, and treatment outcomes.

    Get PDF
    OBJECTIVE Intracranial dural arteriovenous fistulas (DAVFs) are rare in children. This study sought to better characterize DAVF presentation, angioarchitecture, and treatment outcomes. METHODS Children with intracranial DAVFs between 1986 and 2013 were retrospectively identified from the neurointerventional database at the authors' institution. Demographics, clinical presentation, lesion angioarchitecture, treatment approaches, angiographic outcomes, and clinical outcomes were assessed. RESULTS DAVFs constituted 5.7% (22/423) of pediatric intracranial arteriovenous shunting lesions. Twelve boys and 10 girls presented between 1 day and 18 years of age; boys presented at a median of 1.3 years and girls presented at a median of 4.9 years. Four of 8 patients ≤ 1 year of age presented with congestive heart failure compared with 0/14 patients > 1 year of age (p = 0.01). Five of 8 patients ≤ 1 year old presented with respiratory distress compared with 0/14 patients > 1 year old (p = 0.0021). Ten of 14 patients > 1 year old presented with focal neurological deficits compared with 0/8 patients ≤ 1 year old (p = 0.0017). At initial angiography, 16 patients harbored a single intracranial DAVF and 6 patients had 2-6 DAVFs. Eight patients (38%) experienced DAVF obliteration by the end of treatment. Good clinical outcome (modified Rankin Scale score 0-2) was documented in 77% of patients > 1 year old at presentation compared with 57% of patients ≤ 1 year old at presentation. Six patients (27%) died. CONCLUSIONS Young children with DAVFs presented predominantly with cardiopulmonary symptoms, while older children presented with focal neurological deficits. Compared with other pediatric vascular shunts, DAVFs had lower rates of angiographic obliteration and poorer clinical outcomes

    Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits

    Get PDF
    BACKGROUND: Preventing or reducing amyloid-beta (Aβ) accumulation in the brain is an important therapeutic strategy for Alzheimer’s disease (AD). Recent studies showed that the water channel aquaporin-4 (AQP4) mediates soluble Aβ clearance from the brain parenchyma along the paravascular pathway. However the direct evidence for roles of AQP4 in the pathophysiology of AD remains absent. RESULTS: Here, we reported that the deletion of AQP4 exacerbated cognitive deficits of 12-moth old APP/PS1 mice, with increases in Aβ accumulation, cerebral amyloid angiopathy and loss of synaptic protein and brain-derived neurotrophic factor in the hippocampus and cortex. Furthermore, AQP4 deficiency increased atrophy of astrocytes with significant decreases in interleukin-1 beta and nonsignficant decreases in interleukin-6 and tumor necrosis factor-alpha in hippocampal and cerebral samples. CONCLUSIONS: These results suggest that AQP4 attenuates Aβ pathogenesis despite its potentially inflammatory side-effects, thus serving as a promising target for treating AD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13024-015-0056-1) contains supplementary material, which is available to authorized users

    SPARC 2022 book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2022 SPARC conference. Our conference is called “Moving Forwards” reflecting our re-emergence from the pandemic and our desire to reconnect our PGR community, in celebration of their research. PGRs have continued with their research endeavours despite many challenges, and their ongoing successes are underpinned by the support and guidance of dedicated supervisors and the Doctoral School Team. To recognise supervision excellence we will be awarding our annual Supervisor of the Year prizes, based on the wonderful nominations received from their PGR students.Once again, we have received a tremendous contribution from our postgraduate research community; with over 60 presenters, 12 Three-Minute Thesis finalists, and 20 poster presentations, the conference showcases our extraordinarily vibrant, inclusive, and resilient PGR community at Salford. This year there will be prizes to be won for ‘best in conference’ presentations, in addition to the winners from each parallel session. Audience members too could be in for a treat, with judges handing out spot prizes for the best questions asked, so don’t miss the opportunity to put your hand up. These abstracts provide a taster of the diverse and impactful research in progress and provide delegates with a reference point for networking and initiating critical debate. Take advantage of the hybrid format: in online sessions by posting a comment or by messaging an author to say “Hello”, or by initiating break time discussions about the amazing research you’ve seen if you are with us in person. Who knows what might result from your conversation? With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. As recent events have shown, researchers need to collaborate to meet global challenges. Interdisciplinary and international working is increasingly recognised and rewarded by all major research funders. We do hope, therefore, that you will take this opportunity to initiate interdisciplinary conversations with other researchers. A question or comment from a different perspective can shed new light on a project and could lead to exciting collaborations, and that is what SPARC is all about. SPARC is part of a programme of personal and professional development opportunities offered to all postgraduate researchers at Salford. More information about this programme is available on our website: Doctoral School | University of Salford. Registered Salford students can access full details on the Doctoral School hub: Doctoral School Hub - Home (sharepoint.com) You can follow us on Twitter @SalfordPGRs and please use the #SPARC2022 to share your conference experience.We particularly welcome taught students from our undergraduate and master’s programmes as audience members. We hope you enjoy the presentations on offer and that they inspire you to pursue your own research career. If you would like more information about studying for a PhD here at the University of Salford, your lecturers can advise, or you can contact the relevant PGR Support Officer; their details can be found at Doctoral School | University of Salford. We wish you a rich and rewarding conference experience
    corecore