3,186 research outputs found
Full-coverage film cooling on flat, isothermal surfaces: Data and predictions
The heat transfer and fluid mechanics characteristics of full-coverage film cooling were investigated. The results for flat, isothermal plates for three injection geometries (normal, slant, and compound angle) are summarized and data concerning the spanwise distribution of the heat transfer coefficient within the blowing region are presented. Data are also presented for two different numbers of rows of holes (6 and 11). The experimental results summarized can be predicted with a two dimensional boundary layer code, STANCOOL, by providing descriptors of the injection parameters as inputs
Gravitational solution to the Pioneer 10/11 anomaly
A fully relativistic modified gravitational theory including a fifth force
skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The
theory allows for a variation with distance scales of the gravitational
constant G, the fifth force skew symmetric field coupling strength omega and
the mass of the skew symmetric field mu=1/lambda. A fit to the available
anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a
phenomenological representation of the "running" constants and values of the
associated parameters are shown to exist that are consistent with fifth force
experimental bounds. The fit to the acceleration data is consistent with all
current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4)
and (12) and a third table including our predictions for the anomalous
perihelion advance of the planets was adde
Boundary Operators in Quantum Field Theory
The fundamental laws of physics can be derived from the requirement of
invariance under suitable classes of transformations on the one hand, and from
the need for a well-posed mathematical theory on the other hand. As a part of
this programme, the present paper shows under which conditions the introduction
of pseudo-differential boundary operators in one-loop Euclidean quantum gravity
is compatible both with their invariance under infinitesimal diffeomorphisms
and with the requirement of a strongly elliptic theory. Suitable assumptions on
the kernel of the boundary operator make it therefore possible to overcome
problems resulting from the choice of purely local boundary conditions.Comment: 23 pages, plain Tex. The revised version contains a new section, and
the presentation has been improve
Full-coverage film cooling heat transfer study: Summary of data for normal-hole injection and 30 deg slant-hole injection
Heat transfer to a full coverage film cooled turbulent boundary layer over a flat surface was studied. The surface consisted of a discrete hole test section containing 11 rows of holes spaced 5 diameters apart in a staggered array and an instrumented recovery region. Ten diameter spacing was also studied by plugging appropriate holes. Two test sections were used, one having holes normal to the surface and the other having holes angled 30 deg to the surface in the downstream direction. Stanton number data were obtained both in the full coverage region and in the downstream recovery region for a range of blowing ratios, or mass flux ratios, from 0 to 1.3. Initial conditions at the upstream edge of the blowing region were varied from 500 to 5000 for momentum thickness Reynolds number and from 100 to 1800 for enthalpy thickness Reynolds number. The range of Reynolds numbers based on hole diameter and mainstream velocity was 6000 to 22000. Initial boundary layer thicknesses range from 0.5 to 2.0 hole diameters. Air was used as the working fluid. The data were taken for the secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. Superposition was then used to obtain Stanton number as a continuous function of the injectant temperature. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling
Nonexistence theorems for traversable wormholes
Gauss-Bonnet formula is used to derive a new and simple theorem of
nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive
simple proofs for the nonexistence of lorentzian wormhole solutions for some
classes of static matter such as, for instance, real scalar fields with a
generic potential obeying and massless fermions fields
The mass of the very massive binary WR21a
We present multi-epoch spectroscopic observations of the massive binary
system WR21a, which include the January 2011 periastron passage. Our spectra
reveal multiple SB2 lines and facilitate an accurate determination of the orbit
and the spectral types of the components. We obtain minimum masses of
and for the two components of
WR21a. Using disentangled spectra of the individual components, we derive
spectral types of O3/WN5ha and O3Vz~((f*)) for the primary and secondary,
respectively. Using the spectral type of the secondary as an indication for its
mass, we estimate an orbital inclination of and
absolute masses of and , in
agreement with the luminosity of the system. The spectral types of the WR21a
components indicate that the stars are very young (12 Myr), similar to the
age of the nearby Westerlund 2 cluster. We use evolutionary tracks to determine
the mass-luminosity relation for the total system mass. We find that for a
distance of 8 kpc and an age of 1.5 Myr, the derived absolute masses are in
good agreement with those from evolutionary predictions.Comment: 7 pages, 4 figures; accepted for publication in MNRA
- …