461 research outputs found

    Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods

    Full text link
    Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for SERS analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.Comment: 29 pages, 9 figures, 1 Tabl

    Threading Through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers

    Full text link
    In this work we study the reinforcement of polymers by mechanically interlocked derivatives of single-walled carbon nanotubes (SWNTs). We compare the mechanical properties of fibers made of polymers and of composites with pristine single-walled carbon nanotubes (SWNTs), mechanically interlocked derivatives of SWNTs (MINTs) and the corresponding supramolecular models. Improvements of both Young's modulus and tensile strength of up to 200 % were observed for the polystyrene-MINTs samples with an optimized loading of just 0.01 wt.%, while the supramolecular models with identical chemical composition and loading showed negligible or even detrimental influence. This behavior is found for three different types of SWNTs and two types of macrocycles. Molecular dynamics simulations show that the polymer adopts an elongated conformation parallel to the SWNT when interacting with MINT fillers, irrespective of the macrocycle chemical nature, whereas a more globular structure is taken upon facing with either pristine SWNTs or supramolecular models. The MINT composite architecture thus leads to a more efficient exploitation of the axial properties of the SWNTs and of the polymer chain at the interface, in agreement with experimental results. Our findings demonstrate that the mechanical bond imparts distinctive advantageous properties to SWNT derivatives as polymer fillers.Comment: 39 pages, 19 figure

    Control of photon transport properties in nanocomposite nanowires

    Full text link
    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.Comment: 7 pages, 3 figures, 29 references. Invited contribution. Copyright (2016) Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Local mechanical properties of electrospun fibers correlate to their internal nanostructure.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.V. Fasano and G. Potente are acknowledged for confocal and SEM images, respectively. The authors also gratefully thank S. Girardo for high-speed imaging of the polymer jet and E. Caldi for assistance in the SNOM measurements. We gratefully acknowledge the financial support of the United States-Israel Binational Science Foundation (BSF Grant 2006061), the RBNI-Russell Berrie Nanotechnology Institute, and the Israel Science Foundation (ISF Grant 770/11). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 306357 (ERC Starting Grant “NANO-JETS”)

    Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunnelling-AFM, Light-Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells

    Get PDF
    Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM are prepared by electrospinning, and their properties assessed by scanning electron, atomic and lateral force, tunnelling, and confocal microscopy, as well as by attenuated total reflection Fourier transform-infrared spectroscopy, photoluminescence quantum yield and spatially-resolved fluorescence. Highlighted features include ribbon-shape of the realized fibers, and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interaction of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. This method might be applied to other electron donor-electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.Comment: 35 pages, 9 figure

    A systematic review and computational modelling analysis of unilateral montages in electroconvulsive therapy

    Full text link
    Objective: To examine the clinical outcomes of ECT unilateral placements compared in prior studies and apply insights from computational modelling to understand differences between placements. Methods: PubMed, Embase, Scopus and PsycINFO and reference lists were systematically searched for studies of depressed patients where two unilateral placements were compared and clinical outcomes were reported. Computational modelling was done to generate electric field maps for each unilateral placement identified in the systematic review. Results: A total of 29 studies met criteria for inclusion. Eight studies reported efficacy outcomes and 23 studies reported cognitive outcomes. Most studies found no significant difference in efficacy between right unilateral (RUL) and left unilateral (LUL) ECT, and no difference was found between temporo-parietal and fronto-temporal ECT. For the majority of studies, RUL placements had better verbal anterograde memory outcomes compared with the LUL placements. There was some evidence suggestive of cognitive advantages for fronto-frontal and fronto-parietal placements relative to temporo-parietal ECT. Conclusions: For efficacy, studies mainly focused on the comparison of right vs. left hemispheric stimulation, with the available evidence suggesting no substantive difference. RUL placements tended to have better verbal anterograde memory outcomes relative to LUL placements, though limited differences were found between the RUL placements

    Review of Systemic Antibiotic Treatments in Children with Rhinosinusitis

    Get PDF
    Antibiotic treatment in paediatric rhinosinusitis is still a matter of debate, as the current guidelines have been drafted mainly based on clinical studies published before 2013. Recent modifications in the epidemiological basis of the disease might mean that current treatments are not completely adequate considering the evolving microbiological profile of the disease. The present paper reviews the role of systemic antibiotics in children with acute (ARS), chronic (CRS), recurrent (RARS), and complicated acute (CoARS) rhinosinusitis. A total of 14 studies (including 3 prospective non-randomised studies, 8 retrospective studies, and 3 prospective randomised studies) of the 115 initially identified papers were included in this review, corresponding to 13,425 patients. Five papers dealt with ARS, four papers with RARS or CRS, and five papers with CoARS; the remaining papers included patients with either ARS or CRS. Data about the effectiveness of antibiotic treatment in children with ARC, CRS, and CoARS is scarce, as only three randomised controlled trials have been published in the last decade, with contrasting results. There is an urgent need for dedicated controlled trials not only to test the actual clinical benefits deriving from the routine use of systemic antibiotics in different categories of patients but also to compare the effectiveness of various therapeutic protocols in terms of the type of antibacterial molecules and the duration of treatment

    Sotagliflozin, the first dual SGLT inhibitor. Current outlook and perspectives

    Get PDF
    Sotagliflozin is a dual sodium-glucose co-transporter-2 and 1 (SGLT2/1) inhibitor for the treatment of both type 1 (T1D) and type 2 diabetes (T2D). Sotagliflozin inhibits renal sodium-glucose co-transporter 2 (determining significant excretion of glucose in the urine, in the same way as other, already available SGLT-2 selective inhibitors) and intestinal SGLT-1, delaying glucose absorption and therefore reducing post prandial glucose. Well-designed clinical trials, have shown that sotagliflozin (as monotherapy or add-on therapy to other anti-hyperglycemic agents) improves glycated hemoglobin in adults with T2D, with beneficial effects on bodyweight and blood pressure. Similar results have been obtained in adults with T1D treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections, even after insulin optimization. A still ongoing phase 3 study is currently evaluating the effect of sotagliflozin on cardiovascular outcomes (ClinicalTrials.gov NCT03315143). In this review we illustrate the advantages and disadvantages of dual SGLT 2/1 inhibition, in order to better characterize and investigate its mechanisms of action and potentialities

    Dye Stabilization and Wavelength Tunability in Lasing Fibers Based on DNA

    Get PDF
    Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. Deoxyribonucleic acid (DNA) as optical biopolymer in combination with highly emissive dyes has been reported to have excellent potential in this respect. However, achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and the physicochemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, it is shown that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the nonradiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures

    Idiopathic sensorineural hearing loss is associated with endothelial dysfunction

    Get PDF
    Hearing impairment is the most prevalent sensory deficit [1]. Sensorineural hearing loss (SNHL) is the most common type of permanent hearing loss and it occurswhen there is damage to the inner ear (cochlea), or to the nerve pathways fromthe inner ear to the brain.Most of the time, SNHL cannot be medically or surgically corrected. SNHL can result from genetic, environmental, or combined etiologies that prevent normal function of hearing, but, despite detailed investigation, the main cause remains usually unknown. Clinical and experimental studies have shown that ischemia contributes to several SNHL [2], suchas sudden sensoneural hearing loss, presbyacusis and noise-induced hearing loss. All of these SNHL can be related to alteration in blood flow [3]. The aim of the study is finding a relationship between idiopathic SNHL and endothelial dysfunction
    • …
    corecore