334 research outputs found

    Eigenvalue estimates for singular left-definite Sturm-Liouville operators

    Get PDF
    The spectral properties of a singular left-definite Sturm-Liouville operator JAJA are investigated and described via the properties of the corresponding right-definite selfadjoint counterpart AA which is obtained by substituting the indefinite weight function by its absolute value. The spectrum of the JJ-selfadjoint operator JAJA is real and it follows that an interval (a,b)⊂R+(a,b)\subset\mathbb R^+ is a gap in the essential spectrum of AA if and only if both intervals (−b,−a)(-b,-a) and (a,b)(a,b) are gaps in the essential spectrum of the JJ-selfadjoint operator JAJA. As one of the main results it is shown that the number of eigenvalues of JAJA in (−b,−a)∪(a,b)(-b,-a) \cup (a,b) differs at most by three of the number of eigenvalues of AA in the gap (a,b)(a,b); as a byproduct results on the accumulation of eigenvalues of singular left-definite Sturm-Liouville operators are obtained. Furthermore, left-definite problems with symmetric and periodic coefficients are treated, and several examples are included to illustrate the general results.Comment: to appear in J. Spectral Theor

    Fame

    Get PDF

    On random number generators and practical market efficiency

    Get PDF
    Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated the use of tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across different years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a logistic map comparison, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.Comment: Preprint, accepted for publication in Journal of the Operational Research Societ

    ED

    Get PDF

    The motif problem

    Full text link
    Fix a choice and ordering of four pairwise non-adjacent vertices of a parallelepiped, and call a motif a sequence of four points in R^3 that coincide with these vertices for some, possibly degenerate, parallelepiped whose edges are parallel to the axes. We show that a set of r points can contain at most r^2 motifs. Generalizing the notion of motif to a sequence of L points in R^p, we show that the maximum number of motifs that can occur in a point set of a given size is related to a linear programming problem arising from hypergraph theory, and discuss some related questions.Comment: 17 pages, 1 figur

    Gaussbock:Fast parallel-iterative cosmological parameter estimation with Bayesian nonparametrics

    Get PDF
    We present and apply Gaussbock, a new embarrassingly parallel iterative algorithm for cosmological parameter estimation designed for an era of cheap parallel computing resources. Gaussbock uses Bayesian nonparametrics and truncated importance sampling to accurately draw samples from posterior distributions with an orders-of-magnitude speed-up in wall time over alternative methods. Contemporary problems in this area often suffer from both increased computational costs due to high-dimensional parameter spaces and consequent excessive time requirements, as well as the need for fine tuning of proposal distributions or sampling parameters. Gaussbock is designed specifically with these issues in mind. We explore and validate the performance and convergence of the algorithm on a fast approximation to the Dark Energy Survey Year 1 (DES Y1) posterior, finding reasonable scaling behavior with the number of parameters. We then test on the full DES Y1 posterior using large-scale supercomputing facilities, and recover reasonable agreement with previous chains, although the algorithm can underestimate the tails of poorly-constrained parameters. Additionally, we discuss and demonstrate how Gaussbock recovers complex posterior shapes very well at lower dimensions, but faces challenges to perform well on such distributions in higher dimensions. In addition, we provide the community with a user-friendly software tool for accelerated cosmological parameter estimation based on the methodology described in this paper.Comment: 19 pages, 10 figures, accepted for publication in Ap

    Physics-informed neural networks in the recreation of hydrodynamic simulations from dark matter

    Full text link
    Physics-informed neural networks have emerged as a coherent framework for building predictive models that combine statistical patterns with domain knowledge. The underlying notion is to enrich the optimization loss function with known relationships to constrain the space of possible solutions. Hydrodynamic simulations are a core constituent of modern cosmology, while the required computations are both expensive and time-consuming. At the same time, the comparatively fast simulation of dark matter requires fewer resources, which has led to the emergence of machine learning algorithms for baryon inpainting as an active area of research; here, recreating the scatter found in hydrodynamic simulations is an ongoing challenge. This paper presents the first application of physics-informed neural networks to baryon inpainting by combining advances in neural network architectures with physical constraints, injecting theory on baryon conversion efficiency into the model loss function. We also introduce a punitive prediction comparison based on the Kullback-Leibler divergence, which enforces scatter reproduction. By simultaneously extracting the complete set of baryonic properties for the Simba suite of cosmological simulations, our results demonstrate improved accuracy of baryonic predictions based on dark matter halo properties, successful recovery of the fundamental metallicity relation, and retrieve scatter that traces the target simulation's distribution
    • …
    corecore