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ORIGINAL ARTICLE

On random number generators and practical market efficiency

Ben Moewsa,b,c,d

aMcWilliams Center, Carnegie Mellon University, Pittsburgh, PA, USA; bPittsburgh Supercomputing Center, Pittsburgh, PA,
USAcBusiness School, University of Edinburgh, Edinburgh, UK; dCentre for Statistics, University of Edinburgh, Edinburgh, UK

ABSTRACT
Modern mainstream financial theory is underpinned by the efficient market hypothesis,
which posits the rapid incorporation of relevant information into asset pricing. Limited prior
studies in the operational research literature have investigated tests designed for random
number generators to check for these informational efficiencies. Treating binary daily returns
as a hardware random number generator analogue, tests of overlapping permutations have
indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior
studies, we split our analysis into two streams at the annual and company level, and investi-
gate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to
diminish the effects of trading noise and allow the market to realistically digest new infor-
mation. Our results demonstrate that information efficiency varies across years and reflects
large-scale market impacts such as financial crises. We also show the proximity to results of
a well-tested pseudo-random number generator, discuss the distinction between theoretical
and practical market efficiency, and find that the statistical qualification of stock-separated
returns in support of the efficient market hypothesis is dependent on the driving factor of
small inefficient subsets that skew market assessments.
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1. Introduction

One of the primary constituents of financial research is
the efficient market hypothesis, which, depending on
its variation, prohibits the possibility of significant
forecasting based on different kinds of data due to the
sufficiently fast incorporation of available information
into asset prices (Fama, 1965, 1970). It is, in some set-
tings, linked to the hypothesis that markets are inher-
ently unpredictable due to following random walks to
varying degrees, effectively viewing financial time ser-
ies as martingales or submartingales (Cootner, 1964;
Kendall & Hill, 1953; Malkiel, 1973).

Randomised algorithms employing a randomnumber
generator (RNG) are ubiquitous in research applications,
including fields as diverse as politics, biology, and cos-
mology (see, for example, Carson & Lubensky, 2009;
Chaudhary et al., 2015; Moews et al., 2019). The most
common application area is, of course, cryptography, as
encryptions that underlie electronic communication pro-
tocols and, by extension, the Internet, rely on hard-to-
predict pseudo-RNGs (Çavuşo�glu et al., 2016). Given
these security challenges, there was an early desire to
develop statistical tests for randomness, most famously
the Diehard Battery of Tests, which contains the overlap-
ping permutations test applicable to binary sequences
(Marsaglia & Tsang, 2002).

In the literature on financial machine learning, a com-
mon way to approach challenges into a two-class fore-
casting problem is to transform datasets to a binary
representation (Fischer & Krauss, 2018; Lee et al., 2019;
Moews et al., 2019). When doing so in a way that
removes knownmarket features such as heteroskedastic-
ity, meaning a lack of variance homogeneity along the
evolution of a given time series, we can pose the question
whether tests assessing the quality of RNGs can then be
applied to investigations ofmarket efficiency.

The collection of prior research features two works
covering this point of view, both in the operational
research literature. First, Doyle and Chen (2013) intro-
duce the application of the overlapping permutations
test to the efficient market hypothesis in an exploratory
study, analysing daily closing prices for 76 broad
exchange indices and finding non-uniformity of
changes in returns for a subset of them.

Explicitly building on the latter study, Noakes and
Rajaratnam (2016) then focus on the Johannesburg
Stock Exchange to investigate the efficiency of small,
mid, and large market capitalisation indices over the
2005–2019 period. They extend the mentioned prior
research by including adjustments for thin trading,
meaning periods of no or low trading volumes, due to
the same use of daily price series, and find more
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evidence for inefficiency among indices for compa-
nies with small market capitalisations.

In this paper, we confirm the viability of cross-discip-
linary methodology transfers, from the field of random
number generation to econometrics, bridging the gap
through the application of operational research to the
study of financial markets. We combine the strengths of
the two existing studies in the literature by focussing on a
single exchange generally considered to be efficient in the
financial literature, and spanning a both larger and more
recent time frame. We also make use of both monthly
and daily returns, deviating from previous works by
studying market efficiency over longer time horizons
made available for information incorporation.

The further contributions of this paper are fourfold
and go beyond the scope of the above-mentioned prior
research. First, we investigate two sets of experiments,
one separated by years and one by companies, to quan-
tify variations in efficiency for both variables, and ver-
ify considerable annual variations. We challenge the
latter finding with an analysis of cross-correlation sys-
tematics through monthly distributional sums, in
which the impact of the recent global financial crisis
can be observed.

Next, we compare both types of experiments to a
state-of-the-art pseudo-RNG as a baseline for the over-
lapping permutations test, and find that company-sepa-
rated tests show statistically significant inefficiencies by a
slim margin, while year-separated tests paint a clearer
picture of a lack of market efficiency. We then consider
the role of a small subset of inefficiently traded outliers,
demonstrating that company-separated return series
fully qualify for randomness under the given test with
only a small percentage of companies omitted, and put
this finding in the context of prior results.

Lastly, we discuss the notions of theoretical and prac-
tical market efficiency as well as consequences of the for-
mer, and describe the sufficiency of our results for the
latter. Our results have implications for the application of
cryptographic tests in financial research, the evolution of
weak-form inefficiency as an anomaly on volatile
exchanges in developed markets, and the study of
exchange inefficiency on the firm level.

2. Theory, data, and methodology

2.1. Information efficiency in financial markets

As one of the cornerstones of modern financial the-
ory, the efficient market hypothesis (EMH) makes
statements about the incorporation of relevant infor-
mation into stock prices. Initially proposed by Fama
(1965), it branches into three major variations:

� The strong form states that asset prices reflect all
information, both public and private, due to a
timely incorporation by market participants.

� The semi-strong form relaxes this position and
states the above only for publicly available infor-
mation, allowing for profitable insider trading.

� The weak form, in a further constriction, posits
that asset prices reflect past stock market infor-
mation such as prices and trading volumes.

The weak-form EMH is of special interest for us,
as it concerns the incorporation of past information
regarding stock behaviour into the market, as
opposed to newly emerging information such as earn-
ings announcements. The latter can, due to the ran-
domness of unpredictable new information, be
viewed as noise injections into the market in the con-
text of time series of returns, whereas past stock infor-
mation should not have a significant impact on future
market performance under the umbrella of all forms.
While the prior literature on the topic of this paper
does not cover market efficiency beyond the above, it
is useful to provide a short overview. Fama (1970)
frames the hypothesis in terms of expected returns,

Eð~pi, tþ1jUtÞ ¼ 1þ Eð~ri, tþ1jUtÞ½ �pi, t, (1)

with pi,t as the price of a given security i at time t,
and accordingly for pi, tþ1, whereas ri, t denotes the
return percentage, meaning ri, t ¼ ðpi, tþ1 � pi, tÞ=pi, t:
Ut represents information assumed to be incorpo-
rated into pi, t , and the tilde operator signifies the
role as a random variable.

This formulation, despite its widespread adoption
in financial economics, has not met universal
approval. An early criticism is made shortly after by
LeRoy (1976), who describes the definitions used in
Fama (1970) as tautologies, an assessment repeated
later as “[… ] applying a conditional expectations
operator to the identity defining the rate of return as
equal to the price relative ptþ1=pt (less one).” (LeRoy,
1989). Following Fama (1970), the position that pi, t
fully reflects Ut then implies that

Eð~ai, tþ1jUtÞ ¼ 0, with
ai, tþ1 ¼ pi, tþ1 � Eðpi, tþ1jUtÞ: (2)

The same holds for returns, meaning

Eð~bi, tþ1jUtÞ ¼ 0, with
bi, tþ1 ¼ ri, tþ1 � Eðri, tþ1jUtÞ: (3)

This is generally referred to as a “fair game” with
respect to the available information by Fama (1970).
As for Equation (1), LeRoy (1989) criticises that
these equations follow from the definitions of ai, tþ1

and bi, tþ1 with expectations conditional on Ut on
both sides, and argues that the former two defini-
tions as fair game variables do not restrict the sto-
chastic process of the price. The implication is that
any capital market would be efficient, while no
empirical data could decide on market efficiency.
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Later alternatives to these definitions include the
reference to a true price model for assessing equilib-
rium values available to market agents, although this
is acknowledged to introduce a joint hypothesis
problem by Fama (1991), and these definitions con-
tinue to face criticisms as tautological (Pilkington,
2016). While the purpose of this section is a short-
form overview of the background and equations
commonly encountered, these objections should be
kept in mind when assessing the literature, and
reviews from different perspectives are available to
the interested reader (Ausloos et al., 2016; LeRoy,
2010; Malkiel, 2005). Under the assumption that

8t8Ut : Eð~pi, tþ1jUtÞ � pi, t
) 8t8Ut : Eð~ri, tþ1jUtÞ � 0,

(4)

the time series of prices fpi, tg follows a submartin-
gale. Interpreting market efficiency as the independ-
ence of successive returns, an additional assumption
can be made, which is their identical distribution.
This leads, as conditional and marginal probability
distributions of independent random variables are
identical, to

f ðri, tþ1jUtÞ ¼ f ðri, tþ1Þ, (5)

for a density function f that is invariant to t. While
widely accepted in mainstream financial theory, the
EMH has attracted criticisms from the field of behav-
ioural economics early on, for example by Nicholson
(1968), and the general counterargument can be sum-
marised as the doubtful statement that, maybe, people
are not quite as rational as the mathematical maxi-
misation of utility functions seems to imply
(DellaVigna, 2009). These criticisms from a behav-
ioural perspective persist until today, with a recent
review available in Kapoor and Prosad (2017).

In more recent times, the field has further
expanded into findings from neuroscience, with cor-
responding attacks on orthodox market efficiency
(Ardalan, 2018). Despite this, the hypothesis has
proven to possess explanatory power, thus cement-
ing its place in the literature, and the results in this
paper paint a picture of explicable variations rather
than its rejection from a practical perspective.

While this section targets a limited overview, one
alternative is of special interest in the discussion of
Section 4 and warrants a short introduction due to its
place between the EMH and behavioural criticisms
mentioned above. Introduced by Lo (2004) the adap-
tive market hypothesis aims to reconcile the domin-
ant notion of market efficiency with the findings of
behavioural finance from an evolutionary perspective.

Contrary to the assumption that market forces
are strong enough to overcome behavioural biases
in aggregate, this alternative argues based on
bounded rationality as pioneered by Simon (1955),
as opposed to the axiom of rational expectations.

Using this framework’s assumption of “satisficing”,
the adoption of satisfactory choices due to the costs
and limitations of human decision-making, the latter
is explained through heuristics that are developed
and adapted in an evolutionary learning process.

Should market circumstances change, maladaptive
heuristics grow to be unfit, and market actors’
behaviour needs to change to remain competitive.
Changes in market efficiency in this context can be
described, in simple terms, as markets being more
efficient if many market agent “species” compete for
limited financial opportunity resources, as opposed
to few species competing for abundant resources.

The adaptive market hypothesis has found empir-
ical success in the analysis of United States stock mar-
kets (Urquhart & McGroarty, 2014). Other studies
from the last few years cover European and Asiant
markets, as well as cryptocurrency exchanges. (Chu
et al., 2019; Urquhart & McGroarty, 2016; Xiong
et al., 2019). A recent overview for the interested
reader can be found in Lo (2017). With this short pri-
mer covered, we can now think about the implica-
tions for binarised series of stock market returns and
their relationship to random number generation.

2.2. Exchange and empirical data description

We retrieve monthly close prices of Nasdaq-listed
stocks, spanning the years 2001–2019, from the
Wharton Research Data Services (WRDS) Compustat
database. It also features, despite a smaller total mar-
ket capitalisation, more companies than the New
York Stock Exchange, and is subject to considerably
higher year-to-year volatility. The latter is especially
interesting for analyses comparing annual differences
in informational efficiency, which is why we opt for
this exchange as a data source.

This provides us with a dataset featuring 809,195
entries for 4,905 companies, with associated com-
pany identifiers and dates. Missing values are a chal-
lenge commonly encountered in financial data, and
have to be dealt with either through omission of
affected entries or imputation methods. While the
latter, despite their widespread use, are sometimes
cautioned against, for example by Kofman and
Sharpe (2003), the problem that we would encoun-
ter in our analysis is more fundamental:

We are, as Section 2.4 will detail in a bit, inter-
ested in the distribution of binary patterns, and the
content of missing sections can be entirely unrelated
to the pattern of missing entries, for example due to
data collection issues stemming from technical diffi-
culties limited to certain periods. As the question
how these subtly changing binary patterns should be
imputed is difficult to answer satisfactorily, we drop
companies that feature missing monthly close prices

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 3



within the time frame covered by the dataset. This
leads to the omission of 417 companies, or approxi-
mately 8.50%, and is followed by a further cleaning
step that drops companies that feature less than a
year’s worth of entries, resulting in another 5.86%
being sorted out, which is acceptable given that we
investigate efficiency across the exchange and on the
company level.

Figure 1 shows the number of entries per year, trac-
ing the evolution of companies featured on the
exchange over time, with dashed and solid lines indi-
cating the dataset before and after the preprocessing,
respectively. Aside from the increasing number of
Nasdaq-listed public companies, two features stick out.
The first is the slowing of growth around 2008, which
can be explained by the impact of the Global Financial
Crisis of 2007–2008 on IPOs (Aktas et al., 2019).

The second is the bump around 2005, which
shows a slight decrease, and is mostly visible in the
dataset before preprocessing. Natural explanations
for this deviation include aftershocks of the Dotcom
Bubble’s burst a few years prior as well as the pri-
vatisation effect of the Sarbanes-Oxley Act in the
United States following a series of corporate and
accounting scandals, which regulates financial
reporting and report keeping for public companies.
This wave of privatisations for formerly public com-
panies is demonstrated in the literature, for example
by Engel et al. (2007).

The effect on efficiency is still debated, as
described in an overview by Bai et al. (2016),
although this is combined with a reported lack of
empirical evidence for disclosure legislation leading
to breaks in market informativeness. As our
approach studies market efficiency regardless of
contributing factors, this is not of direct concern,
but our analysis shows an improvement in month-
to-month efficiency for the year said act was passed,
lasting until the Global Financial Crisis of 2007–
2008.

2.3. Data preprocessing and considerations

WRDS Compustat, as described in Section 2.2, pro-
vides both cumulative adjustment factors and total
return factors for the purpose of price adjustment
for any given time period, with the former being a
ratio that enables per-share prices to be adjusted for
all stock splits and dividends occurring subsequent
to the end of a given period. Similarly, the latter
represents a multiplication factor that includes cash-
equivalent distributions along with reinvestment of
dividends, as well as the compounding effect of divi-
dends paid on reinvested dividends. Following the
database’s guidelines, we compute adjusted close
prices from unadjusted prices p̂i, t , and for di, t and
ci, t as the cumulative adjustment factor and the total
return factor, respectively, as

pi, t ¼
p̂i, t � di, t

ci, t
: (6)

In the next step, we calculate the return by com-
puting the natural logarithm of the price ratio
between the current and prior period for given price
series of length N,

ri, t ¼ loge
pi, t
pi, t�1

� �
, with t 2 f1, 2, :::,Ng: (7)

Here, the logarithm takes the fact into account that
individual stocks’ price changes are partially depend-
ent on price magnitudes (Karpoff, 1987). In order to
visualise the relevance of working with returns
instead of prices, Figure 2 shows recurrence plots for
a random sample of companies from the dataset, with
a recurrence plot Rn,m for horizontal and vertical axes
n and m generally being calculated as

Rn,m ¼ Hð�� jj v!n � v!mjjÞ, (8)

where v! is a phase space trajectory, � is a binarisa-
tion threshold, and H is the Heaviside step function.
Recurrence plots are frequently used in both statis-
tics and chaos theory to image the periodic nature

Figure 1. Data points per calendar year. The figure shows entries for monthly stock prices available for Nasdaq-listed compa-
nies covering the years 2001–2019. The dashed line indicates the full dataset, whereas the solid line denotes the dataset with
the omission of companies that feature missing values for price entries.
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of phase space trajectories, meaning similar areas
being visited in such a space. More informally and
in our case, it shows the distance between points
along a time series, omitting the binarisation and
visualising recurrences as times a trajectory returns
to a previous value.

The first row of the figure, corresponding to a tra-
jectory p!i, shows slightly darkened upper-left and
lower-right corners in the first row indicating slow
adiabatic changes in line with the framing of market
efficiency as a random walk with drift by Fama (1970).
As we can see, raw prices are less than ideal in terms of
their homogeneity, and the calculation of logarithmic
returns in the second row generally alleviates these
problems. In the final step, we binarise the return ser-
ies using the median �rt,

bi, t ¼ 1 if ri, t > �ri,
0 else:

�
(9)

The choice of the median over the arithmetic mean
follows Doyle and Chen (2013), as this option yields
equal numbers of ones and zeroes in the resulting bin-
ary array, with an offset of one for uneven lengths.
This binarisation also takes care of heteroskedasticity
as the lack of variance homogeneity along the evolu-
tion of a given time series, which corresponds to return
volatility in our case. The presence of heteroskedastic-
ity in markets is well-known in both the financial and
operational research literature (Fabozzi et al., 2017;
Lamoureux & Lastrapes, 1990; Mandelbrot & Taylor,
1967; Meligkotsidou et al., 2019).

Lastly, another well-known effect in financial time
series is momentum, meaning positive autocorrelation,
which is generally described as a premier anomaly of
the EMH (Fama, 1970). Financial research sometimes
uses “runs tests” to check for unbroken sequences of
upward or downward movements, which struggle to
find oscillations between positive and negative auto-
correlations, as they cancel each other out. The

overlapping permutations test described in the follow-
ing Section 2.4 is not subject to this shortcoming, and
also able to check for patterns beyond such unbroken
sequences.

2.4. Overlapping permutations to test
randomness

Originally developed as the generalised serial test by
Good and Gover (1967)1, this approach is based on a
small number of earlier works considering the use of
permutations to assess randomness (Bartlett, 1951;
Good, 1953; Kendall & Smith, 1938). It tests for the
equiprobability of k� separate �-nomes, or permuta-
tions of length �, for k possible letters, and later found
entry into the Diehard Battery of Tests for RNGs,
here it is still one of the recommended core constitu-
ents of today’s testing suites for pseudo-RNGs
(Luengo & Villalba, 2022; Marsaglia & Tsang, 2002).
In its binary variation, we set k¼ 2 and calculate, in
an analogy to v2 for multinomial distributions,

w2
� ¼

X2�
i¼1

ðni � kÞ2
k

, with

k ¼ N � � þ 1
k

(10)

as the expectation for the frequency of each unique
pattern under the assumption of uniformity. As W2

�

does not have an asymptotic tabular v2 distribution
due to a violation of the assumption of independ-
ence caused by the overlap of windows, Good and
Gover (1967) propose first differences to alleviate
this problem as

rw2
� ¼ w2

� � w2
��1: (11)

This statistic fulfils an asymptotic tabular v2 dis-
tribution; and taking the second difference also ful-
fils asymptotic independence, meaning that we can
calculate

Figure 2. Recurrence plots for stock prices and relative returns. Each column of the plot corresponds to one randomly
sampled Nasdaq-listed company from a dataset covering the years 2001–2019. The first row shows recurrence plots for unpro-
cessed stock prices, while the second row shows the same type of plot for logarithmic returns relative to the respective prior
period’s price for the same company.
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r2w2
� ¼ rw2

� �rw2
��1

¼ w2
� � 2w2

��1 þ w2
��2,

(12)

with n� ¼ r22� ¼ 2� � 2 � 2��1 þ 2��2 ¼ 2��2 as the
associated degrees of freedom for � � 2: While the
difference of one in separate w2

� values in the case
of uneven array lengths from Section 2.3 gives rise
to the question of the impact, most terms cancel out
in sums over r2w2

� , as shown by Doyle and Chen
(2013). Following the prior literature, we make use
of � 2 f1, 2, :::, 8g in our tests, and rely on the
second differences due to its improved suitability for
testing for uniform randomness (Marsaglia, 2005).

3. Empirical experiments and results

3.1. Tests of monthly information incorporation

In the first step, we calculate w2
� values for our dataset,

split into two experimental streams for company-sep-
arated and year-separated arrays, respectively. As we
are dealing with a set of 4,225 company-associated
stocks, summary statistics are computed for these
measurements. The upper part of Table 1 shows these
results on a company-separated level, listing the arith-
metic mean and standard deviation for window sizes
� 2 f1, 2, :::, 8g: In addition, as large-valued subsets
will become relevant further down, the table also
shows the respective maximum per window size.

Results for �¼ 1 correspond to the measurement
of single binary values, and are expectedly slightly

larger than for subsequent year-level experiments
due to the smaller average array length for monthly
entries over the investigated time frame.

Next, we repeat the same experiment with entries
separated by their year, leading to the results listed in
the lower part of Table 1. As opposed to the com-
pany-separated case, 19 entries easily lend themselves
to being listed individually in a table, in addition to
the summary statistics already used before. The w2

�

values paint a very diverse picture in terms of the
year-to-year volatility of measured pattern retrieval,
with both higher means and maxima. In part, this can
be explained by the possibility of patterns occurring
within the constraints of a given annual time frame,
whereas company-separated measurements spanning
the entire time period of the dataset offer an avenue
to even these pattern distributions out.

While the means in the upper part of Table 1
closely trace the values reported by Doyle and Chen
(2013) for the Nasdaq Composite index, validating
both the implementation and the stability of these
analyses over different time frames, year-to-year anal-
yses paint a different picture. Given these findings,
the question arises whether different window sizes
correlate in terms of these results.

We plot w2
� values for window sizes � 2

f1, 2, :::, 8g in Figure 3 to see how indicators for the
presence of recurring patterns relate to different pat-
tern lengths. The plot demonstrates mostly strong co-
movements across window sizes, steering us towards

Table 1. Psi-square statistic per window size.
� 1 2 3 4 5 6 7 8

w2
m

0.16 1.63 5.24 13.15 29.28 61.84 127.64 258.64

rðw2
mÞ 1.72 4.28 8.25 14.01 22.71 35.94 57.74 93.19

maxðw2
mÞ 47.51 107.48 222.87 393.09 694.66 1218.16 2112.62 3606.53

2001 0 3.19 62.97 179.27 337.94 533.66 982.93 1562.51
2002 3.96 �10�5 14.73 33.69 70.20 173.48 332.81 646.53 1044.54
2003 3.44 �10�4 1.59 9.24 32.07 72.71 168.11 392.00 750.94
2004 0 0.29 8.35 18.12 83.48 165.97 291.73 550.74
2005 0 0.75 4.49 80.19 167.02 304.36 512.86 841.06
2006 2.98 �10�4 0.35 3.819 20.92 60.21 130.61 262.12 474.63
2007 3.14 �10�5 6.82 39.67 78.64 130.26 217.29 354.00 597.86
2008 0 18.81 174.88 375.87 812.36 1409.31 2602.95 4038.67
2009 0 39.60 202.52 406.63 979.43 1704.42 2647.44 3786.23
2010 0 28.05 58.63 482.49 1368.27 2449.59 3854.00 5694.62
2011 0 28.19 110.34 231.57 394.20 743.01 1193.87 1853.62
2012 0 14.62 44.44 83.91 215.15 374.13 628.24 952.90
2013 2.55 �10�5 48.44 180.98 363.20 658.10 991.05 1471.73 2054.90
2014 2.39 �10�5 248.53 594.81 973.97 1413.72 1928.59 2607.41 3472.00
2015 2.26 �10�5 1.04 29.96 100.75 248.79 457.51 939.28 1737.03
2016 0 33.84 126.71 229.33 547.28 971.32 1513.02 2172.17
2017 0 7.75 29.92 82.13 167.52 342.50 575.70 917.13
2018 1.94 �10�5 0.27 350.79 728.50 1144.63 1875.68 2831.41 4152.08
2019 0 140.65 316.36 556.10 846.33 1291.62 1930.10 2693.00

w2
m

4.20 �10�5 33.55 125.40 268.10 516.89 862.71 1380.91 2070.87

rðw2
mÞ 9.70 �10�5 59.70 149.53 259.14 439.46 696.19 1039.12 1468.50

maxðw2
mÞ 3.44 �10�4 248.53 594.81 973.97 1413.72 2449.59 3853.99 5694.62

The table shows, for window sizes m 2 f1, 2, . . . , 8g, the mean, standard deviation, and maximum for w2 values for monthly data of Nasdaq-listed
companies in the 2001–2019 time frame. The upper and lower parts show results for data separated by company and year, respectively, as well as
w2 values for each year.a
aThe calculation of w2

m follows Equation (10).
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the notion that when patterns of one size are recur-
ring above uniformity, so are those corresponding to
other window sizes.

In the next step, we calculate second differences as
per Equation (12), again for both company-separated
and year-separated datasets. Given the mathematical
guarantees of r2w2

� values outlined in Section 2.4 and
further described by Good and Gover (1967), we can
now make use of critical v2 values for given degrees

of freedom at the commonly employed 5% level for
statistical significance. Second differences that fail to
meet this threshold, thus not supporting the discard-
ing of the null hypothesis of uniform randomness, are
indicated in bold.

The upper part of Table 2 shows results for com-
pany-separated data. Interestingly, while the arith-
metic means indicate uniform randomness, the
combined v2 values for multiplied degrees of freedom

Figure 3. Psi-square statistic per calendar year. The figure shows the evolution of w2 values for Nasdaq-listed companies in
the 2001–2019 time frame, with shifting window sizes m 2 f1, 2, . . . , 8g: The statistic follows Equation (10), with lighter
shades of grey corresponding to higher values for the window size.

Table 2. Second difference for increasing degrees of freedom.
r2w2

3 r2w2
4 r2w2

5 r2w2
6 r2w2

7 r2w2
8

n¼ 2 n¼ 4 n¼ 8 n¼ 16 n¼ 32 n¼ 64

r2w2
m , firms

2.15 4.30 8.21 16.45 33.11 65.44

rðr2w2
mÞfirms

2.49 3.39 5.03 7.62 11.89 17.93P
v2 9067.27 18188.26 34676.73 69480.95 139904.27 276477.57P
v2�1% 8403.91 17301.45 33297.16 67200.00 136140.16 270135.37P
v2�2%

8015.03 16729.07 32454.35 65791.98 133849.35 265978.62P
v2�3%

7678.14 16210.66 31670.69 64460.44 131629.57 261950.75
jv2p<0:05j=jv2j 5.68 �10�2 6.13 �10�2 5.21 �10�2 6.04 �10�2 6.20 �10�2 6.93 �10�2

2001 56.58 56.53 42.37 37.05 253.54 130.32
2002 4.24 17.53 66.78 56.04 154.39 84.29
2003 6.05 15.19 17.80 54.77 128.49 135.05
2004 7.78 1.70 55.59 17.14 43.26 119.69
2005 3.00 71.95 11.13 50.51 71.16 81.00
2006 3.13 13.63 22.19 31.11 61.11 107.16
2007 6.03 6.12 12.66 35.40 49.67 242.07
2008 137.25 44.92 235.50 160.46 596.71 195.76
2009 123.32 41.18 368.70 152.18 218.04 436.23
2010 2.54 393.27 461.92 195.54 323.08 208.90
2011 53.97 39.07 41.40 186.18 102.04 70.55
2012 15.20 9.65 91.77 27.74 95.13 102.49
2013 84.11 49.68 112.68 38.05 147.74 185.78
2014 97.75 32.88 60.58 75.14 163.94 315.98
2015 27.89 41.85 77.26 60.68 273.04 117.46
2016 59.02 9.75 215.34 106.08 117.66 108.23
2017 14.42 30.04 33.19 89.58 58.23 364.93
2018 350.25 27.19 38.43 314.91 224.69 364.93
2019 35.06 64.03 50.49 155.06 193.18 124.43

r2w2
m , years

58.29 50.85 106.09 97.03 172.37 171.77

rðr2w2
mÞyears 80.01 83.08 122.54 75.93 127.52 99.14P

v2 1107.59 966.17 2015.79 1843.62 3275.09 3263.58
jv2p<0:05j=jv2j 0.79 0.89 0.89 0.95 0.95 0.89

The table shows, for degrees of freedom n 2 f2, 4, 8, 16, 32, 64g, the mean and standard deviation for r2w2
m values for monthly data of Nasdaq-

listed companies in the 2001–2019 time frame, as well as the combined v2 statistic. The upper part shows results for data separated by company,
as well as combined v2 statistics for percentual omissions of the highest contributors. The lower part shows results for data separated by year, as
well as r2w2

m values for each year. Results failing the threshold for significance at the 5% level are indicated in bold.a
aThe calculation of r2w2

m follows Equation (12).
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of jAj � n� , for lengths of given arrays A, do not
share this result. This leads us to the suspicion that
there are small subsets of highly inefficient stocks that
skew the sums upwards, which is further supported
by the calculation of proportions of statistically sig-
nificant measures in the table.

We confirm this effect by dropping sufficiently
small percentages of the highest contributors and
reevaluating the measures for combined v2 values.
When doing so, it is important to readjust critical v2

values to account for the slightly reduced array sizes.
The fourth to penultimate rows in the upper part of
Table 2 demonstrate how small percentages (1%,
2%, 3%) result in statistical insignificance for the
combined v2 values for different window sizes, start-
ing with � ¼ 3, 5, 6 for 1%. We extend the coverage
by � ¼ 4, 8 for 2%, and finally add �¼ 7 for 3%,
bringing the sums in line with the arithmetic means
in terms of their support for uniform randomness.

Next, in the lower part of Table 2, we repeat the
same measures for the year-separated dataset as for
w2
� values before in the lower part of Table 1. We

see, just like for the company-separated results, stat-
istically significant deviations from uniform ran-
domness in the arithmetic means, which we have
now established to be due to small subsets of com-
panies with pattern-heavy stock behaviour. This

results, when viewing measures at the annual level,
in a high proportion of significant results, although
these statistics vary starkly between years and dem-
onstrate annual variations in market efficiency as
measured through recurring patterns in this paper.

Finally, as a complementary visualisation, we
transform each year’s array into its constituent
months to separate stocks, and plot kernel density
estimates of the resulting array sums in Figure 4. This
translates to each column-wise sum being a count of
ones per month and year, where uniformly-random
distributions would approximate a narrow distribu-
tion around the mean. The horizontal axis is scaled
based on array lengths to maintain comparability,
and distributions are centred around the mean indi-
cated by a solid vertical line. While not a perfect
approximation by any means, the evolution of the
count spreads roughly follows the time series in
Figure 3, including a broad distribution correspond-
ing to increased intra-market cross-correlations dur-
ing the Global Financial Crisis of 2007–2008 (Zheng
et al., 2012).

3.2. Comparison to measurements of daily data

In contrast to Doyle and Chen (2013) and Noakes
and Rajaratnam (2016), who perform analyses on 76
and 111 time series, respectively, our analysis covers
the entire exchange and operate on 4,905 instru-
ments as described in Section 2.2. While this makes
the use of monthly instead of daily close prices a
natural choice, the computational expense to repeat
our analysis for daily time steps, which brings the
number of entries from 809,195 to 18,832,546, is
beneficial as a comparison. Consequently, we obtain
daily close prices for the same stocks and years, and
repeat our experiments to test for statistically signifi-
cant deviations from uniform randomness.

Table 3 shows the results of this additional ana-
lysis. Measurements for the arithmetic means and
standard deviations for company-separated data stay
almost identical to both our monthly results and
Doyle and Chen (2013)’s values for the Nasdaq
Composite, demonstrating the broad consistency of
our results for different time frames. One interesting
difference to our previous results is the dropping of
the highest 5% of inefficient contributors to achieve
statistically significant measurements of efficiency
across all degrees of freedom.

Given the smaller time steps, more stocks have a
chance to contribute highly inefficient periods to the
overall result, which is confirmed by the listed
higher shares of inefficient contributors for degrees
of freedom requiring additional percentages to be
dropped. While not unexpected, this provides a use-
ful insight into the slight differences that data
granularity can have on analyses.

Figure 4. Kernel density estimates of monthly variability.
The figure shows the distribution of binarised monthly
returns per year, reshaped into month-wise columns and
summed over each column.
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One difference of particular interest is the clear
concentration of inefficiency for higher degrees ver-
sus lower degrees of freedom, which indicates
shorter non-random patterns being more spread out
across instruments for daily data. Similarly, the
results for the year-separated dataset repeat the pre-
viously observed deviations from uniform random-
ness in the arithmetic means, and the stronger
presence of an inefficient subset leads to a relative
elevation in year-to-year measurements.

Taking into account the known differences in
market efficiency in favour of longer time scales
(see, for example, Kim & Shamsuddin, 2008;
Rodriguez et al., 2014), monthly and daily close pri-
ces reasonably mirror each other in terms of the
overall findings and implications. This first applica-
tion of the approach used in our experiments to
varying data frequencies encourages the analysis of
different time frames in related works, which we
touch upon in Section 4.

3.3. Comparison to pseudo-random numbers

When assessing the findings of the previous sec-
tions, a natural question is that of measurements

one would expect from a uniformly-random distri-
bution. This allows for a direct comparison to
numerical results for our methodology that repre-
sent the case of the null hypothesis, and well-estab-
lished pseudo-RNGs can be used as a baseline in
our study’s context of markets as an RNG analogue.

In terms of broader applications in program-
ming languages, the MT19937 implementation of
the Mersenne Twister algorithm has long been the
a standard pseudo-RNG since its original inception
as an answer to then-current flaws in older genera-
tors (Matsumoto & Nishimura, 1998). In more
recent years, however, other general-purpose algo-
rithms have been developed and begun to supplant
its reign.

One example is the family of permuted con-
gruential generators (PCG) introduced by O’Neill
(2014). The PCG64 implementation found wide-
spread adoption, and was made the default gener-
ator used by the NumPy mathematical library as of
version 1.17 in 2019. Among the reasons for this
adoption are the passing of the TestU01 suite with
zero failures, which distinguishes it from the
Mersenne Twister algorithm as the prior default
(L’Ecuyer & Simard, 2007).

Table 3. Second difference for increasing degrees of freedom.
r2w2

3 r2w2
4 r2w2

5 r2w2
6 r2w2

7 r2w2
8

n¼ 2 n¼ 4 n¼ 8 n¼ 16 n¼ 32 n¼ 64

r2w2
m , firms

2.44 4.48 8.53 16.56 32.75 64.88

rðr2w2
mÞfirms

2.56 3.44 4.61 6.52 9.71 14.53P
v2 10396.00 19075.23 36296.73 70430.19 139315.84 276003.70P
v2�1%

9756.11 18199.13 35141.65 68662.60 136419.66 271053.15P
v2�2% 9306.81 17581.32 34304.87 67314.86 134148.97 267121.43P
v2�3%

8901.99 17016.34 33501.13 66023.67 131939.71 263231.51P
v2�4%

8547.31 16512.25 32758.54 64816.08 129856.88 59525.77P
v2�5% 8210.39 16032.74 32033.78 63628.77 127782.30 255810.71

jv2p<0:05j=jv2j 8.74 �10�2 7.97 �10�2 7.05 �10�2 6.46 �10�2 6.42 �10�2 6.54 �10�2

2001 66.44 51.39 104.54 66.91 204.98 207.94
2002 51.36 62.46 103.91 157.59 193.32 244.34
2003 1.51 54.27 99.86 85.91 156.24 314.02
2004 0.028 41.98 86.17 109.40 64.67 179.81
2005 22.51 124.63 156.29 86.30 78.70 217.40
2006 26.29 76.96 21.28 86.30 205.94 189.65
2007 38.36 81.70 352.04 356.78 108.37 393.37
2008 51.40 68.13 126.97 531.60 377.72 1130.57
2009 160.50 31.54 202.79 557.00 280.62 730.46
2010 82.33 9.00 131.26 267.02 633.03 1108.18
2011 33.55 743.2 310.15 1555.89 1163.54 1518.06
2012 17.84 10.15 440.16 204.99 258.52 275.35
2013 69.53 101.75 87.91 121.29 373.04 387.18
2014 44.02 112.24 61.78 88.16 215.85 335.25
2015 221.47 360.49 280.11 390.58 282.27 538.77
2016 136.87 156.62 176.59 157.88 561.84 528.90
2017 18.66 71.25 68.46 154.29 125.00 218.86
2018 79.27 282.88 174.81 163.81 221.11 205.80
2019 17.78 172.42 225.25 149.04 254.40 344.64

r2w2
m , years

70.51 137.53 168.96 281.82 303.11 477.29

rðr2w2
mÞyears 66.45 167.10 106.89 332.19 248.76 370.28P

v2 1339.71 2613.12 3210.33 5354.63 5759.14 9068.57
jv2p<0:05j=jv2j 0.89 0.95 1.00 1.00 1.00 1.00

The table shows, for degrees of freedom n 2 f2, 4, 8, 16, 32, 64g, the mean and standard deviation for r2w2
m values for daily data of Nasdaq-listed

companies in the 2001–2019 time frame, as well as the combined v2 statistic. The upper part shows results for data separated by company, as well
as combined v2 statistics for percentual omissions of the highest contributors. The lower part shows results for data separated by year, as well as
r2w2

m values for each year. Results failing the threshold for significance at the 5% level are indicated in bold.a
aThe calculation of r2w2

m follows Equation (12).
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Using the PCG64 implementation to repeat our
experiments from Section 3.1, Table 4 shows that the
means for w2

� are very close to those for firm-sepa-
rated values in the upper part of Table 1, with
slightly higher standard deviations, while both means
and standard deviations are notably lower for the
year-separated dataset. In both cases, the respective
maxima are considerably lower than those for the
empirical Nasdaq data, underlining the previously
noted impact of inefficient subsets.

For second differences r2w2
� , Table 5 shows the

same statistical metrics as before, for firm-separated
values, as the lower part of Table 2. We can see that
both arithmetic means and combined v2 measures
retain the null hypothesis of uniform randomness
across all degrees of freedom, setting the pseudo-
RNG apart from our market analogue. We also
tested a simplistic pseudo-RNG based on logistic
maps with iterative seed draws to confirm the over-
lapping permutations test’s ability to pick up on
weak pseudo-RNGs. The sums in particular often
barely qualify or fail the test for uniform random-
ness, highlighting the need for well-tested generators
for comparative purposes.

Results for company-separated data closely trace
each other for empirical data and pseudo-RNG sim-
ulations, with marginally larger means and standard
deviations for the former, and with means across
both experiments maintaining the null hypothesis of
uniformly-random data for all window sizes. The
same holds true for combined v2 measures once the

subset of high-impact contributors are removed, as
described in Section 3.1. The proportion of statistic-
ally significant measures is also approximately the
same for company-level Nasdaq data and pseudo-
RNG simulations.

Contrary to that, year-separated experiments differ
prominently between empirical and simulated data;
means and standard deviations taken over annual
measures are considerably larger than for the pseudo-
RNG output. The latter also features a proportion of
statistically significant results similar to the company-
separated simulation, whereas the empirical dataset
consists mostly of instances satisfying the criterion
for inefficiency. As shown in Section 3, a small num-
ber of stocks not filtered out in a year-by-year ana-
lysis drives much of these large values, although that
specific impact does not explain the stark variability
between years, with mostly years before the recent
global financial crisis qualifying for market efficiency
for some of the window sizes.

4. Discussion

We have shown that there are significant year-to-
year changes in exchange-wide efficiency, as well as
an overall inefficiency in aggregated annual data.
We also find that individual stocks of Nasdaq-listed
companies are efficient in aggregate when taking
small subsets of inefficient outliers into account,
which offers a partial explanation of annual variabil-
ity, and that stocks follow approximately the same

Table 5. Results for second differences for increasing degrees of freedom.
r2w2

3 r2w2
4 r2w2

5 r2w2
6 r2w2

7 r2w2
8

n¼ 2 n¼ 4 n¼ 8 n¼ 16 n¼ 32 n¼ 64

r2w2
m , years

1.76 4.52 6.66 14.52 30.85 61.90

rðr2w2
mÞyears 2.42 3.30 3.01 6.15 7.02 9.83P

v2years 33.38 85.96 126.62 275.87 586.19 1176.06

jv2p<0:05j=jv2j 5.26 �10�2 10.53 �10�2 0 5.26 �10�2 0 0

r2w2
m , firms

2.04 4.04 7.91 16.05 32.07 64.28

rðr2w2
mÞfirms

2.02 2.79 4.09 5.68 7.96 11.2P
v2firms 8621.46 17066.77 33402.40 67826.51 135477.96 271599.01

jv2p<0:05j=jv2j 5.04 �10�2 4.83 �10�2 4.88 �10�2 4.85 �10�2 4.31 �10�2 4.78 �10�2

The table shows, for degrees of freedom n 2 f2, 4, 8, 16, 32, 64g, summary statistics for r2w2
m values across generated pseudo-random numbers.

Rows 1–4 and rows 5–8 cover a set modelled on the year-separated and firm-separated dataset, respectively. Results failing the threshold for signifi-
cance at the 5% level are marked in bold.a
aThe calculation of r2w2

m follows Equation (12).

Table 4. Psi-square statistic per window size.
� 1 2 3 4 5 6 7 8

w2
m , years

1.23 �10�5 0.60 2.95 9.84 23.38 51.45 110.37 231.18

rðw2
mÞyears 1.51 �10�5 0.54 2.63 6.35 11.56 19.77 30.75 45.76

maxðw2
mÞyears 210.51 225.86 218.95 244.50 201.04 210.43 184.10 201.31

w2
m , firms

6.93 �10�3 1.07 4.17 11.32 26.37 57.47 120.64 248.09

rðw2
mÞfirms 1.13 �10�2 1.47 3.51 6.50 10.81 16.67 25.08 37.02

maxðw2
mÞfirms

0.08 13.89 31.00 65.27 139.00 274.40 513.21 949.11

The table shows, for window sizes m 2 f1, 2, . . . , 8g, the mean, standard deviation, and maximum of w2
m for generated pseudo-random numbers.

Rows 1–3 and rows 4–6 cover a set modelled on the year-separated and firm-separated dataset, respectively.a
aThe calculation of w2

m follows Equation (10).
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level of uniformly-random assessment as well-tested
pseudo-RNGs. The last point is especially relevant
to annual anomalies, as they can both be driven by
inefficient subsets and be resolved in terms of effi-
ciency over longer time frames, placing the market in
a state of overall efficiency at a larger scale. While we
have adjusted monthly and daily close prices for
splits and dividends as described in Section 2.3,
experiments with unadjusted raw prices yield almost
identical results. One area that warrants a closer look
is the compatibility of our results with the concept of
market efficiency in general.

Samuelson (1973) formalises a random walk
model of market efficiency, demonstrating both the
martingale property of such a model and its allow-
ance for subsets of market participants, too small to
affect prices appreciably, to systematically realise
excess returns. This is, of course, especially relevant
in terms of stronger forms of market efficiency, for
both fundamental analysis as permitted under the
semi-strong EMH and strong-form insider trading.
It also means that market data that is transformed
into binarised returns can still contain hidden ineffi-
ciencies exploited by small pools of capital, drawing
a line between the model of theoretical efficiency
and the leeway that practical implementations allow.
The result in terms of uniform randomness in
empirical data, in both cases and as far as statistical
analyses go, is the same.

This bears similarity to two different proposals in
the literature; self-destruction of predictability as
described by Timmermann and Granger (2004),
which posits that anomaly exploitability decays due
to a time-limited presence or public dissemination of
the anomaly, and the adaptive market hypothesis by
Lo (2004), which attempts to reconcile market effi-
ciency with behavioural economics through adaption
processes in changing market environments.

Research on the latter mentioned in Section 2.1
generally focusses on foreign investment, market
microstructure factors, and calendar effects. In con-
trast, we propose an additional technological perspec-
tive on the market environment and market actor
adaptability. New developments, be it in terms of
computing resources or methodology, do not push
adopted approaches to market participation out due
to the transitory nature of exploitable anomalies or
widespread adoption following publication.

Instead, the process is a result of a technological
arms race that renders prior solutions unfit for the
changed market environment. An already estab-
lished and prominent example of this process is the
competition in terms of information transmission
speeds among high-frequency trading firms. In
recent years, the adoption of modern machine learn-
ing among financial practitioners, as well as the fast

development of new methods in the field, has pro-
vided further fuel (Gogas & Papadimitriou, 2021).
However, as long as adopted technologies, or satis-
ficing heuristics under the terminology of the adap-
tive market hypothesis, do not outperform to a
degree that renders predecessors ineffective, small
pools of capital, akin to a small number of species
in an abundant environment, can exploit anomalies
in a shared manner.

The above paragraphs show that for the effects of
theoretical market efficiency to occur, at least on a
meaningful level and for varying notions of market
efficiency, the underlying process can contain com-
plications related to inefficiency. This should not
come as a surprise, as the EMH, just like models in
other disciplines rooted in the scientific method, is a
model with explanatory power that does, necessarily,
allow for a certain degree of leeway to remain suc-
cinct. Anomalies detected in our experiments are,
thus, reconcilable with practical market efficiency.

With regard to financial economics and econo-
metrics, this paper provides valuable insights on the
time-dependent variability of weak-form market effi-
ciency, as well as on the role of outliers in the
assessment of overarching exchanges and broad
indices. Natural follow-ups to this type of investiga-
tion are the more fine-grained analyses of flash
crashes and financial crises, which Noakes and
Rajaratnam (2016) already start for the impact of
the Global Financial Crisis of 2007–2008 in South
Africa, the potential for industry sector influences
and similar effects that shape the presence and
importance of inefficient subsets, and the measure-
ment of differences between exchanges, both in
terms of subset-driven inefficiency and annual vari-
ance, as well as regarding the impact of exchange
volatility on overlapping permutations tests.

Similarly, in the field of market microstructure,
the question arises whether the latter differences can
be linked to exchange peculiarities such as trading
rules, systems, and accessibility of advances in finan-
cial technology such as high-frequency trading.
While our paper, due to limitations in its scope, fol-
lows Noakes and Rajaratnam (2016) in focussing on
a particular exchange, a comparison to other devel-
oped markets, for example in Europe, is an interest-
ing follow-up avenue (Borges, 2010).

In the same vein, and regarding the mentioned
differences in trading environment and technology,
emerging markets also warrant further study to
extend this area of application (Gregoriou, 2009).
Lastly, the same approach can be transferred to dif-
ferent types of markets outside of stock exchanges.
Here, the efficiency of foreign exchange markets is a
prime target for follow-up research as a long-stand-
ing topic of interest in the financial literature (Burt
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et al., 1977; Chaboud et al., 2014). As mentioned in
Section 3.2, different time scales are an interesting
extension to these kinds of studies, and varying effi-
ciencies of foreign exchange markets for varying
data granularity is an additional direction for future
research.

5. Conclusion

This paper builds on and extends a topic that has
recently developed in the operational research litera-
ture, centred on the application of overlapping per-
mutations tests from the field of random number
generation to financial exchanges, to test for infor-
mational efficiency in markets. To this end, we go
beyond existing research by covering a larger and
more recent time frame with longer step sizes, and
by splitting our experiments into the company level
and year-separated analyses for Nasdaq data.

Our results for company-separated data demon-
strate that stocks of individual Nasdaq-listed public
companies feature average market efficiency as
measured in this study, although this efficiency is
only confirmed when omitting a small subset of
outliers, which skew the overall assessment towards
statistically significant inefficiency for the overall
exchange. This has implications for prior research
on whole markets and overarching indices, and for
hypothesis tests of market efficiency more generally.
For daily instead of monthly close prices, the num-
ber of outliers is slightly larger, as shorter-term inef-
ficiencies in price behaviour can contribute to the
results, and this increase is driven by short patterns
spanning only a few days.

When performing the same analysis on year-sep-
arated data instead, we find that the same effect
applies, but also that assessments vary starkly in
their pattern recurrence, which is further confirmed
through the distribution of summed counts, and
reflects cross-correlations and decreased efficiency
during financial crisis scenarios.

For both streams, we perform comparisons to a
well-tested pseudo-random number generator and
find comparable measures for company-separated
data once outliers are removed, while annual analy-
ses differ in their year-to-year variation. We also
discuss the implications of theoretical versus prac-
tical efficiency for market participants, arguing for
the latter kind of efficiency to allow for adaptive lee-
way as well as unrealised inefficiencies while main-
taining the results implied by financial theory.

Our work contributes to the literature on cross-
disciplinary methodology transfers in operational
research, applications of cryptographic tools in
econometric analyses, the evolution of weak-form
inefficiency as an anomaly on volatile exchanges in

developed markets, and the broader study of
exchange efficiency on the individual company level
as well as differences between exchanges and links
to market microstructure.
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Endnote

1. As an interesting anecdote, Irving J. Good served
alongside Alan Turing at Bletchley Park during
WWII, and later also was a consultant for Stanley
Kubrick’s science fiction classic “2001: A Space
Odyssey”.
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