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ABSTRACT

We present and apply Gaussbock, a new embarrassingly parallel iterative algorithm for cosmo-

logical parameter estimation designed for an era of cheap parallel computing resources. Gaussbock

uses Bayesian nonparametrics and truncated importance sampling to accurately draw samples from

posterior distributions with an orders-of-magnitude speed-up in wall time over alternative methods.

Contemporary problems in this area often suffer from both increased computational costs due to high-
dimensional parameter spaces and consequent excessive time requirements, as well as the need for

fine tuning of proposal distributions or sampling parameters. Gaussbock is designed specifically with

these issues in mind. We explore and validate the performance and convergence of the algorithm

on a fast approximation to the Dark Energy Survey Year 1 (DES Y1) posterior, finding reasonable
scaling behavior with the number of parameters. We then test on the full DES Y1 posterior using

large-scale supercomputing facilities, and recover reasonable agreement with previous chains, although

the algorithm can underestimate the tails of poorly-constrained parameters. Additionally, we discuss

and demonstrate how Gaussbock recovers complex posterior shapes very well at lower dimensions, but

faces challenges to perform well on such distributions in higher dimensions. In addition, we provide
the community with a user-friendly software tool for accelerated cosmological parameter estimation

based on the methodology described in this paper.

Keywords: cosmology: cosmological parameters — methods: statistical – methods: data analysis

1. INTRODUCTION

Bayesian methods are now a standard approach to

data analysis and inference in astrophysics. In this ap-
proach, probabilities are regarded as a means of quan-

tifying information, and in particular the information

contained in an experimental dataset about a specific

model. This is encoded in the posterior, which com-

bines prior, or external, information with the likelihood

from the current data. For textbooks providing an intro-

duction and overview of Bayesian methods, we refer in-

terested readers to Bernardo & Smith (1994), MacKay

(2003) , and Gelman et al. (2013), as well as Murphy
(2012) and Hobson et al. (2009) for an overview cen-

tered on machine learning and cosmology, respectively.

In most realistic cases, the analytic or direct numeri-

cal evaluation of posterior probability distributions is

impossible or infeasible, especially in cases that fea-
ture many parameters, due to the large volume of high-
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dimensional spaces. The wide-spread use of Bayesian

methods has largely been driven by the availability of
sampling algorithms, which can generate samples from

a posterior distribution without exploring the full space.

These samples can then be used to generate summary

statistics like means and limits on individual param-

eters, or correlations between them. For a shorter
overview of the application of Bayesian inference in cos-

mology, see Trotta (2008).

Within the cosmology literature, Christensen et al.

(2001) proposed initial arguments for the use of Bayesian
methods for the purpose of cosmological parameter es-

timation. They argued for Markov chain Monte Carlo

(MCMC) approaches due to their superiority in terms

of sampling from, and converging to, the true posterior

distribution in the limit of an infinite sample size. The
application of MCMC approaches in these early efforts

were centered on the Metropolis-Hastings algorithm,

which was named after work done by Metropolis et al.

(1953) and, for the more general case, Hastings (1970).
The distinguishing feature of this method is the accep-

tance of new points in the Markov chain if the likelihood

ratio of the proposed point and the last point is larger

http://arxiv.org/abs/1905.09800v2
http://orcid.org/0000-0003-0897-040X
http://orcid.org/0000-0001-9789-9646
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than one, and the probabilistic acceptance of points with

a lower ratio if the latter is larger than a random num-

ber n ∈ [0, 1]. This acceptance of less likely points de-

pendent on the likelihoods leads to the sampling from
the posterior distribution and, notably, does not require

marginalization via the evidence. Knox et al. (2001)

then followed the proposal of Christensen et al. (2001)

to constrain the age of the universe to t0 = 14.0 ± 0.5

Gyr. Earlier work includes Saha & Williams (1994),
who made use of the Metropolis-Hastings algorithm for

for galaxy kinematics, and Christensen & Meyer (1998),

who employed the related Gibbs sampler for gravita-

tional wave analysis (Geman & Geman 1984). For more
in-depth information covering the wide array of contri-

butions from both the astrophysical and statistical liter-

ature, we recommend Trotta (2008) as a more complete

overview of the development of Bayesian inference in

cosmology in particular, and Robert & Casella (2011)
and Brooks et al. (2011) for a history of MCMC meth-

ods and their development in general.

Up to, and into, the new millennium, the Metropolis-

Hastings algorithm remains the standard approach to
cosmological parameter estimation, which was further

supported by the development of a dedicated implemen-

tation in CosmoMC (Lewis & Bridle 2002). A variety of

algorithms and codes are, however, available for different

types of problems. The optimal choice depends on mul-
tiple factors, including the dimensionality of the prob-

lem, meaning the number of parameters to estimate, the

evaluation speed, the need for Bayesian evidences, the

availability of analytic derivatives, the ability to sam-
ple from marginal distributions, and the possibility and

degree of using parallelization.

In more recent years, new MCMC sampling techniques

were proposed and subsequently applied to cosmolog-

ical parameter estimation. Examples include Popu-

lation Monte Carlo (PMC) techniques introduced by

Cappé et al. (2004) and Wraith et al. (2009), and used

by Kilbinger et al. (2010) to develop CosmoPMC; affine-

invariant MCMC ensembles by Goodman & Weare
(2010), which led to the publication of emcee by

Foreman-Mackey et al. (2013) and CosmoHammer by

Akeret et al. (2013); and renewed interest in Approx-

imate Bayesian Computation (ABC) for likelihood-free

inference based on simulations to introduce CosmoABC

and abcpmc (Ishida et al. 2015; Akeret et al. 2015).

Density estimation likelihood-free inference (DELFI)

is a recently developed technique that trains a flexible

density estimator to approximate the target posterior,
circumventing the large number of simulations that tra-

ditional ABC approaches can require (Bonassi et al.

2011; Fan et al. 2013; Papamakarios & Murray 2016).

Using the JLA sample of 740 type SN Ia supernovae as

described in Betoule et al. (2014), Alsing et al. (2018)

subsequently deploy this method to estimate cosmo-

logical parameters. Their approach, however, makes a
few simplifying assumptions, for example normally dis-

tributed priors and likelihoods. Other advanced meth-

ods, like the Hamiltonian Monte Carlo approach devel-

oped by Duane et al. (1987), have also been applied,

for example by Hajian (2007). These developments are
driven by the computationally costly likelihood calcu-

lations involved in most MCMC algorithms, trying to

alleviate this issue with a certain degree of paralleliza-

tion due to the increased availability of cheap computing
resources, faster convergence or, in the case of ABC, the

circumvention of direct likelihood computations alto-

gether.

As such methods either fail to reduce the runtime

enough for modern problems or have their own pitfalls,
for example through an increased risk of introducing bi-

ases, the quest for highly parallelized and fast alterna-

tives for cosmological parameter estimation continues.

This need is further exacerbated by upcoming missions
like LSST and Euclid requiring high-dimensional pos-

terior approximations with a large number of required

nuisance parameters predicted to vastly exceed previous

missions (Amendola et al. 2018).

It should be noted that the statistical literature on
sampling methods is rich and vast, and a complete re-

view of both their history and all current developments

would exceed the scope of this paper. The methods

covered in more detail here are those likely to be more
familiar to the astrophysical community, due to being

wide-spread or featuring field-specific implementations.

While we aim to cover relevant comparisons, this should,

of course, not be misunderstood as a judgment about

these methods being superior in the wider context of all
statistical developments, but to place this work in the

context of astrostatistics.

Nested sampling is a Bayesian take on numerical

Lebesque integration for model selection introduced
by Skilling (2006). While targeting the calculation

of Bayesian evidence, posterior samples are gener-

ated as a by-product, and the algorithm was quickly

shown to require considerably fewer posterior eval-

uations (Mukherjee et al. 2006). Due to denser and
sparser sampling from high-posterior and low-posterior

regions, respectively, nested sampling provides increased

efficiency when compared to previous MCMC meth-

ods. This has lead to extensions and implementa-
tions for applications in cosmology, notably CosmoNest

by Liddle et al. (2006), MultiNest as described in

Hobson & Feroz (2008) and Feroz et al. (2009), and
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PolyChord (Handley et al. 2015). In cosmology, such

implementations have been used in areas as diverse as

cosmic ray propagation models, cosmoparticle physics,

and gravitational wave astronomy (Trotta et al. 2011;
Del Pozzo 2012; Verde et al. 2013; Del Pozzo et al.

2017; Wang et al. 2018). A comparison between nested

sampling and state-of-the-art MCMC methods can be

found in Allison & Dunkley (2014), while an investi-

gation of statistical uncertainties in nested sampling
is provided by Keeton (2011). Nested sampling has

also been adopted by other fields of research, includ-

ing GPU-accelerated implementations, for example in

systems biology (Aitken & Akman 2013; Stumpf et al.
2014).

The statistical literature, however, points out vari-

ous issues of nested sampling methods that have pre-

vented wide-spread adoption in statistics. Among these

are the assumption that perfect and independent sam-
ples from a constrained version of the prior are drawn

in each iteration, the underestimation of sampling er-

rors due to the simulated-weights method it employs,

and an asymptotic approximation variance that scales
linearly with the dimensionality of a given parameter

space (Chopin & Robert 2010; Higson et al. 2018).

In this paper, we use example likelihoods from

the Dark Energy Survey (DES) collaboration’s anal-

ysis of lensing and clustering data, as presented in
Abbott et al. (2018). These calculations make use of

the CosmoSIS and CosmoLike pipelines, which con-

tain implementations of both Multinest and emcee

(Zuntz et al. 2015; Krause & Eifler 2017).
For a comparison of approaches designed for the accel-

eration of MCMC methods in particular, including addi-

tional parallelization methods, see Robert et al. (2018),

who cover methods targeting both the exploration stage

of the algorithms and the exploitation level. The second
approach includes Rao-Blackwellization and scalability,

with the latter encompassing parallelization under this

nomenclature. Other examples of methods trying to op-

timize the performance of established algorithms include
the no-U-turn sampler (NUTS) by Hoffmann & Gelman

(2014), which alleviates the need of the previously men-

tioned HMC algorithm for tuning by computing the tra-

jectory length via recursively built candidate proposals,

as well as work by Neiswanger et al. (2014) on asymp-
totically exact and embarrassingly parallel MCMC sam-

pling. The latter solves the slowing-down of parallel

MCMC methods by reducing the amount of required

communication in a divide-and-conquer tactic that splits
up the dataset and which the authors justify with pro-

hibitively long runtimes of many serial methods. Inter-

estingly, our method allows for the use of any sampling

method to create the initial sample, meaning that such

optimized divide-and-conquer methods can be easily in-

corporated into our approach. The need for sped-up pos-

terior estimation approaches is further elaborated on by
Bardenet et al. (2014) and Wilkinson (2005), with the

latter pointing out the need for parallelized method due

to: “[...] weeks of CPU time on powerful computers” for

serial MCMC methods on high-dimensional problems of

interest. The need for parallelization approaches stems
mostly from cases in which parts of the computations

are very expensive, but which can be transformed into

an, ideally, embarrassingly parallel problem that allows

the respective steps to take full advantage of a greater
number of cores, thus cutting otherwise infeasible run-

times to a fraction. For a more general overview of both

the history and more recent developments in the field of

Monte Carlo methods, such as multi-stage Gibbs sam-

plers, see Robert & Casella (2004).
In this paper, we propose a parallel-iterative algo-

rithm to address these issues, making use of recent ad-

vances in the fields of statistics and machine learning.

Our method starts with a preliminary approximation of
the target distribution, either through a built-in affine-

invariant MCMC ensemble or a user-provided initial

sample guess. We then fit a non-parametric model to the

sample and employ a variation of sampling-importance-

resampling to iteratively move the samples toward the
true distribution, repeating these steps until the pro-

cess converges. In doing so, we also offer a user-friendly

Python package to both the cosmology and the wider as-

tronomy community, as well as a general parameter es-
timation tool for other disciplines dealing with the same

issues. We test our implementation on the DES Year 1

(Y1) posterior, and on a fast approximation to the latter

for extended tests.

The remainder of this paper is structured as follows:
We cover the relevant methodology, which includes an

overview of variational inference for Bayesian mixture

models and truncated importance sampling, as well

as the mathematical architecture of the proposed ap-
proach, in Section 2. In Section 4, we introduce an

open-source implementation based on our method, ex-

plain computational considerations and parallelization,

and provide a quickstart tutorial. Experiments for both

toy examples and an approximation of the DES Y1 like-
lihood are covered in Section 5, together with cosmolog-

ical parameter estimation runs on supercomputing fa-

cilities for the full DES Y1 likelihood. We present and

discuss the results of these experiments in Section 6, and
summarize our findings in the conclusion in Section 7.
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2. MATHEMATICAL BACKGROUND

While Bayesian inference has earned its place as a

powerful instrument for cosmological research, complex

problems often suffer from the need to approximate

probability densities that are difficult or outright infeasi-
ble to compute. Since Bayesian methods rely on the pos-

terior density, approximations are a necessary evil. In

the algorithm presented in this paper, we fit a mixture

model to sample from the posterior using variational

inference methods, while avoiding fixing the number of
mixture components by using a Dirichlet process. We

iteratively improve these samples using truncated impor-

tance sampling until a convergence criterion is fulfilled.

In this section, we introduce variational inference
in Section 2.1, followed by Dirichlet processes and

the stick-breaking procedure in Section 2.2. After an

overview of sampling-importance-resampling and trun-

cated importance sampling in Section 2.4, we introduce

a novel method for parallel-iterative parameter estima-
tion in Section 3.

2.1. Variational inference for mixture models

Variational Bayesian methods were originally devel-

oped and explored in the context of artificial neural net-

works, and gained initial interest from research on in-
ference in graphical models (Peterson & Anderson 1987;

Peterson & Hartman 1989; Jordan et al. 1999). The use

of variational Bayesian methods for inference is com-

monly known as variational inference (VI) and provides
a faster and more scalable alternative to Markov chain

Monte Carlo (MCMC) methods in many contexts; the

main difference between them is that VI treats param-

eter estimation not as a sampling problem, but instead

as an optimization problem. From a research point of
view, these methods also garnered the interest of the

statistics community because they are currently not as

well understood as MCMC methods (Blei et al. 2017).

The Kullback-Leibler divergence DKL is a central con-
cept in VI and defines by how much a distribution di-

verges from another, or how similar it is. For a reference

distribution p(x) and a proposal distribution q(x), the

DKL can be expressed as

DKL(p(x)||q(x)) =

∫

∞

−∞

p(x)log
p(x)

q(x)
dx. (1)

The fact that the DKL is an asymmetric difference mea-

sure means that DKL(p(x)||q(x)) 6= DKL(q(x)||p(x)),
which is due to its calculation as a directional loss of
information.

In VI, the DKL is used to find a best-fitting distribu-

tion to a set of samples. Let Q be a selected family of

distributions, x and z observations and parameters, re-

spectively, and p(z) a prior density that can be related

to observations via the likelihood p(x|z) to calculate the

posterior p(z|x). The family member q̂(z) that best

matches the posterior can be found in the framework
of an optimization problem, finding with some specified

tolerance the value of

q̂(z) = argmin
q(z)∈Q

DKL (q(z)||p(z|x)) . (2)

Calculating this quantity directly is often infeasible,

since it is equivalent to measuring the Bayesian evidence.

Instead, VI methods (equivalently) maximize an alter-

native quantity, the evidence lower bound (ELBO),

ELBO(q) = E[log p(z,x)]− E[log q(z)]

= E[log p(x|z)]−DKL (q(z)||p(z)) ,
(3)

which is numerically easier to calculate than the DKL.

The ELBO also delivers a lower bound for the evidence,
which is the reason for the utility of VI for model selec-

tion, as covered in Blei et al. (2017). A more extensive

introduction to VI for the interested reader can be found

in Murphy (2012).

2.2. Dirichlet processes and stick-breaking

Instead of the more traditional approach of fixing the

number of components in the mixture model that we

use to model the posterior, we determine the compo-

nent number from the sample itself at each iteration.
This approach employs a Dirichlet Process (DP) as a

prior on the number of parameters, which enables the

use of a suitable number of components during each step,

meaning that changes between iterations are not forced
to use the same components.

Developed by Ferguson (1973), DPs are distributions

of distributions, featuring a base distribution G0 and

a scaling parameter α ∈ R+, and with realizations de-

noted as G ∼ DP(α,G0). This area has important ap-
plications as the prior in infinite mixture models, and

gained new traction in both statistics and machine learn-

ing in recent years (Gershman & Blei 2012). The DP

mixture model presented originally by Antoniak (1974)
takes θi as the distribution parameter of observation i

and uses the discrete nature of the base distribution G0

to view the DP mixture as an infinite mixture model.

For samples s from such a DP mixture, with sample size

N , the predictive density with s = s1, ..., sN is

p(s|s, α,G0) =

∫

p(s|θ)p(θ|s, α,G0) dθ. (4)

As the computation of that density is, again, infeasible,

Blei & Jordan (2006) introduce the use of VI for DP

mixtures. Bayesian takes on mixture models employ a
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prior over the mixing distribution as well as over the

cluster parameters, with the former commonly being a

Dirichlet and the latter being a Gaussian distribution

in our case. Given the discrete nature of random mea-
sures drawn from a DP, a mixutre of the latter can be

viewed as a mixture model with an unbounded number

of components (Blei & Jordan 2006).

The Bayesian nonparametrics approach employs the

stick-breaking process by Sethuraman (1994), which ex-
ploits the discrete nature of DPs to calculate the proba-

bility mass function, and can be used for Bayesian Gaus-

sian mixtures with an undetermined number of Gaus-

sians. The name is based on the analogy of breaking a
stick of unit length into infinite segments by consecu-

tively breaking off β1, β2, etc. from the stick until the

remainder is truncated to recover a finite-dimensional

representation. The truncated variational distribution

is then used to approximate the posterior of an infi-
nite DP mixture. As a mathematical description of the

subsequent application of VI to DPs with stick-breaking

would go beyond the scope of this overview, we refer the

reader to Blei & Jordan (2006). A less concise introduc-
tion to DPs and Bayesian nonparametrics in general, as

well as its applications, is provided in Hjort et al. (2010).

As the posterior distribution, given a DP mixture

prior, cannot be directly calculated, VI offers a deter-

ministic approach to approximate them. In this paper,
we employ the mean-field family within VI to optimize

the DKL, using this approach to approximate the joint

posterior for parameters of an infinite Gaussian mix-

ture, made finite to a maximum number of components
through stick-breaking.

2.3. Importance Sampling

Importance sampling was described early by Kahn & Marshall

(1953) in the context of sample size reduction in Monte

Carlo methods and continues to inspire a wide array

of extensions. This includes physics-specific techniques
like umbrella sampling for difficult energy landscapes by

Torrie & Valleau (1977) and, more recently, methods to

alleviate issues with poorly approximated proposal dis-

tributions (Ionides 2008). It is also a staple in cosmolog-
ical parameter estimation, for example in Wraith et al.

(2009) and Kilbinger et al. (2010). Generally, the basic

method is a way to estimate distribution properties if

only samples from a different, often approximated, dis-

tribution are given. Let p(z) be the target distribution,
q(z) an approximate (or proposed) distribution, and

f(z) some function. The expectation of f(z) can then

be computed as

E[f ] =

∫

f(z)p(z) dz

=

∫

f(z)
p(z)

q(z)
q(z) dz

≃
1

N

N
∑

i=1

p(zi)

q(zi)
f(zi),

(5)

with N as the number of drawn samples. The ratios in

this equation, given as

rl ≡
p(zl)

q(zl)
, (6)

are called the importance weights or importance ratios

and are central to the method.

Sampling-importance-resampling (SIR) is a two-step

approach in which the importance weights for a set of

samples are calculated, after which an equally-sized sub-

set of these samples is generated by drawing from them
with probabilities per sample indicated by the normal-

ized importance weights. For a more in-depth introduc-

tion to importance sampling and other related sampling

methods, see Bishop (2006).

2.4. Counteracting high-weight samples

One issue with this approach is the possibility of overly

dominant samples, meaning points with disproportion-

ately high posterior values in comparison to the rest of a
set of model samples. During the importance resampling

step, this dominance leads to copies of these samples be-

ing overrepresented, resulting in sets that are too narrow

in their densities. We address this issue with truncated

importance sampling, an extension of importance sam-
pling that truncates weights of high-value samples based

on the total number of drawn samples, with guarantees

for finite variance and mean-square consistency under

weak conditions (Ionides 2008). For a set of Ni samples,
proposal distribution posteriors q(θi), actual posteriors

p(θi) and a set truncation value α with justifications to

be set at α = 2, the weight wi of a single sample is

updated according to

wi = min
(

ri, r̄N
1

α

i

)

,with ri =
p(θi)

q(θi)
, (7)

where r̄ is the mean of all importance weights for
the sample. With this extension applied to SIR, the

weighted drawing of samples is limited by the trunca-

tion value. This change improves the behavior of im-

portance sampling during the early part of the algorithm
described below, when the estimated distribution q is a

poor approximation to the desired posterior p, and alle-

viates the issue of working with relatively small sample

sizes for high-dimensional parameter spaces.
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3. THE GAUSSBOCK ALGORITHM

Based on Bayesian nonparametrics and machine learn-

ing as described in Sections 2.1 and 2.2, we introduce an

algorithm that uses variational inference on an infinite

Dirichlet process approximated via stick-breaking to fit
variational Bayesian Gaussian mixture models (GMMs)

in an iterative manner. This algorithm offers a highly

adaptive and embarrassingly parallel way to approxi-

mate high-dimensional posteriors with computationally

expensive likelihoods.

Data: Initial posterior-space samples θstart,
number of required output samples n,
array of allowed ranges per parameter r,
number of samples drawn per iteration m,
safety margin multiplier for sampling c,
maximum number of mixture components g,
dynamically shrinking fitting tolerance d,
value for importance weight truncation α,
log-posterior function for p(θ|D)

Result: Approximated posterior samples θfinal

θnew ← θstart;
for i← 1 to N do

Calculate the (shrinking) model fitting tolerance
d← a1 − i ·∆a · (N − 1)−1

Fit a variational Bayesian GMM to the samples
Mi ← VBGMM(θnew, d, g)
Sample a set of parameters from the fitted model
θi ← θ ∼Mi s.t. length(θ) = m · c
Cut samples straying beyond the allowed ranges
R = r1 × r2 × . . .× rdim(θi)

θi ← θi ∩R
Keep the required number of parameter samples
θi ← θ

(1:n)
i

Parallel calculation of true log-posterior values
p← p(θi|D)
Compute importance probabilities in linear space
wi ← exp(p− p(θi|M));
Compute the truncated importance probabilities

wi ← min(wi, w̄i · length(θ
1

α

i
))

Renormalize the updated importance probabilities
wi ← wi × (

∑
wi)

−1;
Weighted sampling from the parameter samples
L← length(θi)
θnew ← sample(θi,wi) s.t. length(θnew) = L
Terminate if convergence criterion is reached
if |∆σ2

i < t then
break

end

end

Return the user-specified number of final samples
return θfinal ← θ ∼Mi s.t. length(θ) = n

Algorithm 1: Pseudo-code for Gaussbock.

The idea behind our approach is to start from an ini-

tial sample guess, either from existing data or a short

run of another sampler such as emcee. Based on the

work on nonparametric VI by Gershman & Blei (2012),

our algorithm uses a variational Bayesian GMM due

to its ability to automatically determine the number
of Gaussians required to produce a good fit by stick-

breaking an infinite Dirichlet process mixture. For this

reason, only the provision of a maximal number of Gaus-

sians is required. The algorithm then determines means

and variances for the optimal number of Gaussians given
a sample and fitting tolerance. This is followed by draw-

ing a new sample from the fitted mixture model, and a

truncated SIR step to move the sample distribution fur-

ther toward the true the posterior density. These steps
are then repeated in an iterative manner until conver-

gence, which is assessed from the change in the variance

of importance weights at the end of each iteration:

1. Fit a variational Bayesian GMM to the sample,

2. draw a new sample from the newly fitted model,

3. perform an SIR step for a weighted sample, and

4. check inter-iteration variances for convergence.

We use a dynamically shrinking tolerance d for the

model-fitting step. Let a be the tuple denoting the ini-

tial and final model-fitting tolerances, with a1 > a2, and
let N be the maximum number of iterations, then the

tolerance di for a given iteration i ∈ {1, 2, . . . , N} is

di = a1 − i ·∆a · (N − 1)−1, with ∆a = a1 − a2. (8)

This approach is related to the previously mentioned

PMC algorithms initially introduced by Cappé et al.

(2004), and applied to cosmological inference in Kilbinger et al.

(2010). It differs, though, by the nonparametric na-

ture of the model, which eliminates the bias present
in the predetermined number of distributions in clas-

sical GMMs. It also adds the weight truncation to

reduce the influence of overly dominant samples with

high posterior values in relatively small samples. Our
method bears motivational similarity, although consid-

erable methodological differences, to CosmoABC, while

not being subject to the potential pitfalls of forward-

simulation inference in ABC (Ishida et al. 2015).

In Algorithm 1, we provide a more complete pseudo-
code representation of the most relevant parts of the

approach described in this paper, which we name

Gaussbock. For this algorithm, we let r be the array of

tuples representing the allowed ranges (min, max) per
dimension, that is, per parameter. Furthermore, let N

be the maximum number of iterations, m the number

of samples to be drawn from each iteration’s model,

n the number of samples returned after termination,
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g the maximum number of Gaussians available for ap-

proximating the posterior distribution, and c a safety

margin parameter greater than one to draw additional

GMM samples in case some fall outside the parame-
ter bounds. Finally, let D be the empirical data used

for calculating the true likelihood. The specifics of the

variational Bayesian GMM (VBGMM) with reasonable

default settings, like the prior of the covariance distribu-

tion and the parameter initialization for the VBGMM,
are omitted in order to keep the pseudo-code concise.

As (mostly adaptive) defaults are used for the settings

of Gaussbock, only the initial approximative sample set

θstart, the number of iterations n, and the handle of a
function to compute p(θi|D) have to be provided with

regard to the above pseudo-code. In addition, if no θstart

is provided, the implementation described in Section 4

will automatically run an affine-invariant MCMC en-

semble to procure that initial set of posterior-space sam-
ples. Since the determination of convergence is a com-

mon issue in MCMC methods, Gaussbock uses a conver-

gence threshold t that terminates the iterative fitting-

resampling procedure if reached before the maximum
number of iterations. For this purpose, we measure the

difference in inter-iteration weight variances ∆σ2
i , which

takes the form

∆σ2
i = |σ̄2

i − σ̄2
i−1|,

with σ̄2
i = dim (D)

−1
dim (D)
∑

d=1

σ(log(wid))
2.

(9)

Here, the average logarithmic importance weight vari-

ance is denoted as σ̄2
i , providing the arithmetic mean

over the dimensionality dim (D), meaning the number
of parameters.

4. SOFTWARE IMPLEMENTATION

In order to make this algorithm readily available, we

have released a Python 3 package incorporating the com-

plete Gaussbock algorithm. The package is installable
via pip from the Python Package Index1, while doc-

umentation and source code are available in a public

repository2.

Figure 1 shows the schematic workflow of Gaussbock,
with a choice between an automated initial posterior ap-

proximation and a user-provided sample guess, as well

as the option to return importance weights and the fi-

nal fitted model. The automated initial approximation

makes use of an affine-invariant MCMC ensemble, as
introduced by Goodman & Weare (2010), through the

1 https://pypi.org
2 https://github.com/moews/gaussbock

Figure 1. Schematic workflow of Gaussbock. Inputs are
colored in red, iterative steps in green, primary outputs in
blue, and optional outputs in yellow. Starting with an ini-
tial et of samples that roughly appproximates the posterior
distribution, the method uses an iterative model-fitting and
parallelized sampling-importance-resampling step using im-
portance ratio truncation to evolve toward tighter fits for the
true posterior. Depending on the dimensionality of the prob-
lem, a variational Bayesian Gaussian mixture model (GMM)
or kernel density estimation (KDE) can be used. This itera-
tive step is is repeated until convergence or a maximum num-
ber of iterations is reached. As indicated by the exclusive OR
connection, the initial sample set can be user-provided or au-
tomatically inferred through a short-chained affine-invariant
Markov chain Monte Carlo (MCMC) ensemble.

package emcee by Foreman-Mackey et al. (2013) and
with parameters like the number of walkers being au-

tomatically determined based on the required function

inputs. The only required inputs to the tool’s main func-

tion are the lower and upper limits for each parameter
(‘parameter ranges’), the handle of a function that ac-

cepts a point in the problem’s parameter space and re-

turns its log-posterior value (‘posterior evaluation’), and

the desired number of posterior samples to be returned

(‘output samples’).
An overview of settable inputs is shown in Table 1. We

strongly encourage users to provide parameter ranges

that are scaled to the interval [0, 1] when setting a

threshold for the optional convergence determination
(‘convergence threshold’) due to its mean variance-

https://pypi.org
https://github.com/moews/gaussbock
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Table 1. Gaussbock inputs. The table lists all 19 possible inputs that can be set by the user, as well as a short explanation
for each input, with the first three being required. The remaining 16 optional inputs are marked with an asterisk before their
name and are default values are based on the tests presented in this paper and should, as a result, generally achieve desirable
performance for a wide array of problems reasonably similar to those described here.

Input Explanation Default

1. parameter ranges The lower and upper limit for each parameter

2. posterior evaluation Evaluation function handle for the posterior

3. output samples Number of posterior samples that are required

4. *initial samples Choice of emcee or a provided start sample [‘automatic’, 2 · dim (D) + 2, 103]

5. *gaussbock iterations Maximum number of Gaussbock iterations 10

6. *convergence threshold Threshold for inter-iteration convergence checks None

7. *mixture samples Number of samples drawn for importance sampling 104

8. *em iterations Maximum number of EM iterations for the mixture 103

9. *tolerance range The range for the shrinking convergence threshold [10−2, 10−7]

10. *model components Maximum number of Gaussians fitted to samples ceil((2/3) · dim (D))

11. *model covariance Type of covariance for the GMM fitting process ‘full’

12. *parameter init How to intialize model weights, means and covariances ‘random’

13. *model verbosity The amount of information printed during runtime 1

14. *mpi parallelization Whether to parallelize Gaussbock using an MPI pool False

15. *processes Number of processes Gaussbock should parallelize over 1

16. *weights and model Whether to return importance weights and the model False

17. *truncation alpha Truncation value for importance ratio reweighting 2.0

18. *model selection Type of model used for the fitting process ‘gmm’ if dim (D) > 2, else ‘kde’

19. *kde bandwidth Kernel bandwidth used when fitting via KDE 0.5

based functionality. When setting a convergence thresh-

old, we recommend a value of ∼ 0.01 · dim(D) as
a choice that, based on the tests performed in the

course of this work, takes increased dimensionalities

into account when using the built-in convergence cri-

terion. The implementation uses schwimmbad, a li-

brary for parallel processing tools, to provide MPI
parallelization on parallel computing architectures

(Price-Whelan & Foreman-Mackey 2017). The use of

MPI can be activated with the optional boolean input

(‘mpi parallelization’) being set to ‘True’. Alternatively,
for running the algorithms across multiple cores locally,

the optional input ‘processes’ can be set to the num-

ber of desired cores to be used. The initial sample to

start from can be provided by the user, for example

through sampling a best-guess approximation or using
the posterior from previous research (‘initial samples’).

An input of special importance is the ability to set

the variable parameter for truncated importance sam-

pling (‘truncation alpha’), the ideal value of which can
change based on the difficulty of the posterior approx-

imation problem. By default, the recommended value

of 2.0 is used (Ionides 2008). When dealing with, for

example, high-dimensional truncated Gaussians or sim-

ilarly hard-to-approximate shapes, a value of up to 3.0
can enforce a stronger truncation to combat high-weight

samples. Similarly, the truncation value can be set down

to a minimum of 1.0 for weaker importance weight trun-
cation. Interlinked with this input are the dimensional-

ity of the problem and number of samples drawn from

a fitted model in each iteration (‘mixture samples’), as

a lower number of samples in a higher-dimensional pa-

rameter space increases the odds of importance weights
with comparatively high values due to sparse samples.

Time requirements and the number of available cores

are the limiting factors for such considerations, which is

discussed in the experiments in Section 5.
The algorithm’s runtime can be further influenced

by limiting the maximum number of Gaussians to

be used for fitting a VBGMM during each iteration

(‘model components’). By default, this input is de-

termined based on the number of parameters to be
estimated, but user knowledge about the complexity of

the target distribution can inform the requirement for

lower or higher maximums. Low-dimensional problems

with dim(D) < 3 trigger the use of kernel density es-
timation (KDE) instead of a VBGMM by default, as

this density estimation approach is quite powerful in

such scenarios, but faces issues in higher-dimensional

problems (O’Brien et al. 2016). The use of KDE or a

VBGMM can, however, be forced by the user by set-
ting the respective optional input (‘kde bandwidth’) to
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either ‘kde’ or ‘gmm’. The bandwidth used for the

KDE functionality can be customized with an optional

input (‘kde bandwidth’). We advise the use of KDE

for low-dimensional problems due to the ability to catch
hard-to-approximate posteriors in combination with our

iterative method, which we demonstrate in Section 5.4.

5. EXPERIMENTS

DES is an imaging survey that covers 5000 square

degrees of the southern celestial hemisphere, operating

a wide-field camera on the 4-meter Vctor M. Blanco
Telescope located at the Cerro Tololo Inter-American

Observatory (Abbott et al. 2016a). The survey probes

cosmology using multiple different sources, including

galaxy clustering and lensing, cluster counts, and su-
pernova measurements. Preliminary constraints from

DES Science Verification (SV) data are presented in

Abbott et al. (2016b) and Kacprzak et al. (2016) while,

more recently, results and data for DES Y1 observa-

tions are described by Abbott et al. (2018) and have
been made public3.

In this work, we use the Y1 weak lensing and galaxy

clustering measurements as a test of Gaussbock. These

measurements consist of a set of 2D two-point correla-
tion functions of galaxy shape and position (“3x2pt”)

in tomographic bins by redshift. These functions can be

predicted from the cosmological matter power spectrum

and redshift-distance relation, both of which are sen-

sitive to the underlying cosmological parameters, and
especially to the matter density fraction Ωm and the

variance of cosmic structure σ8. DES analyses yield

constraints on these parameters comparable to those

obtained from the CMB with Planck (Aghanim et al.
2018). For our experiments, we use the baseline ΛCDM

model with varied neutrino density as our test likeli-

hood. The sampling methods used in the main DES

analysis are discussed in Krause et al. (2017); they

use both the emcee affine-invariant sampler and the
MultiNest nested sampling method, and found close

agreement between the two methods.

In Section 5.1, we describe a fast-likelihood approxi-

mation of the DES Y1 posterior, followed by a perfor-
mance test for Gaussbock. We explore scaling behav-

ior of our implementation on the same approximation

with experiments in Section 5.2. In Section 5.3, we run

Gaussbock on the full DES Y1 posterior to test both the

performance in real scenarios and the the ability to run
fully parallelized via MPI on supercomputing facilities.

Lastly, in Section 5.4 we test the behavior of the method

3 https://des.ncsa.illinois.edu/releases/y1a1

on distributions with specific challenges and determine

what types of failure modes it experiences.

5.1. Approximating the Dark Energy Survey posterior

The real DES Y1 likelihood is slow to evaluate, with

durations per likelihood that make serial algorithms
non-viable, as in Wilkinson (2005). In order to enable

experiments that target controlled assessment and scal-

ing behavior, we use an approximation to the DES Y1

posterior with a multivariate truncated Gaussian distri-

bution, for which we employ the mean and covariance
values for 26 cosmological and nuisance parameters, as

well as their limits from the respective DES data release.

This approach results in an extremely fast parameter set

evaluation based on a DES Y1 approximation suitable
for our purposes. A perfectly Gaussian approximation

to the posterior would be an artificially easy test of a

model that fits Gaussians; our posterior is truncated

within a few sigma of the peak in many of its parame-

ters, and thus provides a reasonable challenge.
As discussed in Section 4, we use an increased trunca-

tion value for the SIR step of Gaussbock, which we set to

3.0, and a convergence threshold of 0.01 · 26 = 0.26 that

follows the previously outlined best-practice guidelines
and triggers the use of the built-in convergence deter-

mination. The number of samples per iteration is set to

15000, with the reasoning behind this choice further out-

lined in Section 5.2. As we want to weight the returned

posterior samples with their importance weight, we ac-
tivate the additional return of the final model and im-

portance weights. Apart from these settings, we use the

default behavior of Gaussbock by not providing other

optional inputs. Table 2 shows the lower and upper lim-
its for cosmological and nuisance parameters employed

in our approximation.

The results of this experiment are shown in Figure 2

and demonstrate the abilily of Gaussbock to recover cor-

rect constraints. Starting from a short and unconverged
emcee chain, for which distributions are shown in yel-

low, the importance-weighted posterior samples marked

in blue closely match the long-run emcee samples high-

lighted in red. The achieved level of agreement is good
enough to make posterior contours and distributions

for the target distribution and the importance-weighted

samples hard to separate by eye. While the distributions

for unweighted posterior samples in green show a good

agreement with the long-run samples, weighting the out-
put samples with the optionally returned importance

weights pushes the sample distributions further toward

to target posterior, thus validating the additionally pro-

vided functionality related to KDE for low-dimensional
parameter estimation. While this experiment is based

https://des.ncsa.illinois.edu/releases/y1a1
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Figure 2. DES Y1 posterior approximation with Gaussbock. The left figure depicts the matter density parameter (Ωm) versus
the Hubble constant (H0), whereas the right figure shows the baryon density parameter (Ωb) versus the scalar amplitude of
density fluctuations (As). Contours for the importance-weighted samples generated with Gaussbock are drawn in blue, with
contours for an emcee chain with 5.4 million samples across 54 walkers drawn in red. Darker and lighter shaded contour areas
depict the 68% and 95% credible intervals, respectively. In addition to the same color coding as used in the contour plots,
one-dimensional subplots for each parameter also show the unweighted distribution of Gaussbock samples in green, and the
initial guess from which Gaussbock starts, obtained through a short-chained emcee run with 1000 steps per walker, in yellow.
True means for DES Y1 data are indicated with dashed black lines to demonstrate the correct centering of both the fast
approximation we employ in the experiment and the Gaussbock outputs.

Figure 3. Gradual improvement of contours across Gaussbock iterations. The figure depicts, in yellow, the importance-weighted
posterior approximations for the matter density parameter (Ωm) versus the Hubble constant (H0). Each panel indicates the
respective number of iterations I in the upper right corner, for iteration numbers from the the set {0, 2, . . . 10} to cover easily
visible morphing behavior before fine-tuning takes place. Contours for an emcee chain with 5.4 million samples across 54 walkers
are drawn in red to serve as a target distribution and orientation point across panels. Darker and lighter shaded contour areas
depict the 68% and 95% credible intervals, respectively. On the far left, at I = 0, the posterior approximation corresponds to
the initial sample guess. True means for DES Y1 data are indicated with dashed black lines.

on an approximation of the full DES Y1 posterior, it
offers a suitable testbed to prepare for the full-scale run

described in Section 5.3.

Another factor of interest is the iterative behavior of

our algorithm, as Gaussbock is supposed to continuously

improve the agreement of its internally generated sam-
ples with the true posterior distribution. In Figure 3, we

illustrate this behavior, showing the gradual improve-

ment of the constraints. The plots depict the morph-
ing and shifting behavior of Gaussbock samples for the

number of iterations as even integers in the interval [0,

10]. The cosmological parameters chosen for this exper-

iment are the same as in the left-hand panel of Figure 2.

The evolution across the different panels showcase the
algorithm’s ability to start from a very rough sample

guess and gradually move toward the target distribu-
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Table 2. Cosmological and nuisance parameter limits for
a fast approximation of the DES Y1 posterior. The lower
and upper limits shown as open intervals closely follow prior
distribution features previously used by DES for data from
the first year of observations (Abbott et al. 2018).

Category Parameter Interval

Cosmology Ωm [0.1, 0.9]

H0 [0.55, 0.9]

Ωb [3 · 10−2, 7 · 10−2]

ns [0.87, 1.07]

As [5 · 10−10, 5 · 10−9]

ων [6 · 10−4, 10−2]

Lens galaxy bias b1, . . . , b5 [0.8, 3.0]

Shear calibration m1, . . . , m4 [−0.1, 0.1]

Intr. alignment AIA [−5.0, 5.0]

µIA [−5.0, 5.0]

Source photo-z ∆z1s , . . . ,∆z4s [−0.1, 0.1]

Lens photo-z ∆z1l , . . . ,∆z5l [−5 · 10−2, 5 · 10−2]

tion. The latter is closely approximated by an extremely

long emcee chain as an ideal sample. As demonstrated

through this visualization, the algorithm first shifts gen-
erated samples toward the true mean with a lower-

variance distribution, followed by incrementally spread-

ing out to create a close fit to the target distribution.

5.2. Exploration of scaling behavior

In algorithms designed for the use with highly paral-

lelized architectures, as well as in approaches for high-
dimensional estimation problems, the question of how

the algorithm in questions scales for different factors is

important. For this reason, we now explore the scal-

ing behavior of our algorithm. We quantify the time to

convergence using the criterion introduced in Section 3,
measured on the fast DES Y1 approximation covered in

Section 5.1.

Higher-dimensional problems can, in general, be as-

sumed to lead to a greater complexity of the estima-
tion procedure, forcing Gaussbock to morph and shift

the distribution in each iteration across more dimen-

sions. We test our implementation for dimensionalities

3 ≤ dim(D) ≤ 26, up to the full set of cosmological

and nuisance parameters in our DES Y1 approxima-
tion. We perform this parameter estimation 50 times

for each number of dimensions to create confidence in-

tervals, with the respective subset of parameters being

randomly selected. In each case, we use the convergence
threshold 0.01 ·dim (D). The left panel of Figure 4 plots

the number of iterations required to reach convergence

versus the number of estimated parameters, showing the

rise with problems of increased dimensionality.

The 95% confidence intervals around the average num-

ber of iterations to convergence highlight the larger vari-

ance with increasing numbers of parameters. The aver-

age number of 26.6 iterations for estimating the full set
of 26 parameters provides an indicator for the full DES

Y1 posterior computation in Section 5.3.

The second question in terms of scaling behavior tar-

gets the embarrassingly parallel part of our algorithm,

as we can vary the number of samples drawn at each it-
eration. Although the ability to parallelize across large

numbers of cores is one of the strengths of Gaussbock,

and while access to parallel computing architectures is

wide-spread in modern cosmology, the number of avail-
able cores for a given task still faces upper limits. As de-

scribed in Section 4, a higher number of samples drawn

from a given iteration’s fitted model is generally prefer-

able, which translates to a preference for a higher num-

ber of cores due to the subsequent parallelization of the
truncated SIR step. This poses the question of the scal-

ing behavior of this benefit, as the required number of

iterations to convergence is expected to decrease with a

higher number of samples per iteration.
The right panel of Figure 4 shows the scaling behavior

of the required number of iterations to convergence ver-

sus the number of samples drawn from the fitted model

during each iteration. We perform 50 Gaussbock runs

per number of samples to create confidence intervals, in
the interval [5000, 40000] and in steps of 5000.

Let I be the number of required iterations to con-

vergence, C the number of available cores, and S the

number of used samples per iteration. Then the total
number of posterior value calculations per core over the

course of a Gaussbock run is I · S · C−1. Increasing

numbers of samples constrain the variance of required

iterations, and the dashed black line in the right panel

of Figure 4 indicates an optimal trade-off (in terms of
total core time) between the two variables as min(I · S)
at S = 15000 for the number of samples, which in-

forms our input choices in Section 5.1. This visualization

also bears resemblance to the ‘elbow criterion’ in clus-
ter analysis, which determines the optimal number of

clusters by plotting that number against the explained

variance (Thorndike 1953).

Lastly, we investigate the convergence behavior of

Gaussbock as a follow-up to Figure 3, to ensure that
both the convergence check itself and the recommended

calculation of a convergence threshold behave as in-

tended. The algorithm is run on the same parameter

estimation problem as in Section 5.1, for a total of 27
iterations to cover the previously computed mean num-

ber of iterations to convergence of 26.6. As for pre-

vious tests, we run this experiment 50 separate times
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Figure 4. Relationship between time to convergence, dimensionality, and the number of samples per iteration for Gaussbock.
The left panel shows the number of iterations needed to achieve convergence, as a function of the dimensionality of the problem.
The dashed black line indicates the mean number of iterations (26.6) needed for the full 26D DES Y1 parameter set. The right
panel shows the number of iterations before convergence, as a function of the number of importance samples taken at each
iteration, in steps of 5000. The dashed line marks the ‘elbow criterion’ for the trade-off in terms of time requirements from
iterations and sample size, at 15000 samples. In both panels, the central line shows the mean and the shaded band the 95%
confidence intervals over 50 simulations per point.

Figure 5. Convergence behavior of Gaussbock for the num-
ber of completed iterations in approximated 26D DES Y1
analyses. The figure shows the inter-iteration change in vari-
ances of the logarithmic weights, used as a convergence cri-
terion, with the dashed line marking the default convergence
threshold for this problem. The mean value over 50 runs is
shown as the central line, and the shaded band shows the
95% confidence interval.

to generate 95% confidence intervals. The results are

shown in Figure 5, starting after the first 10 iterations

to cover fine-tuning behavior after the initial morphing
and shifting explored in Figure 3, and with the dashed

black line indicating the convergence threshold set to

0.01 · dim(D) = 0.26. The figure, showing a remark-

ably consistent and well-constrained behavior, demon-

strates both convergence behavior for the threshold cal-

culation and narrow confidence intervals for multiple ex-

periments.

5.3. The full Dark Energy Survey posterior

In order to expose our method to a fully realistic ex-

periment without approximations, we apply Gaussbock

to the full DES posterior from the DES Y1 experiments

and data release (Abbott et al. 2018; Abbott et al. 2018;

Krause et al. 2017). We use the public CosmoSIS im-

plementation of the public Y1 likelihood, which in-

cludes CAMB as descibed by Lewis & Bridle (2002) and
Howlett et al. (2012), and Halofit as introduced in

Smith et al. (2003) and Takahashi et al. (2012) to com-

pute distances and matter power spectra, CosmoSIS-

specific modules for the Limber integral and other in-
termediate steps, and Nicaea4 for the computation

of real-space correlations from Fourier space values

(Kilbinger et al. 2009). Since the public implementa-

tion of the Y1 likelihood differs very slightly from the

released chains, we rerun the model referred to as d l3

in the public DES Y1 chains using MultiNest for an

identical comparison. The experiment starts with the

same initial sample guess via a short-chained emcee run

that we use for our fast approximation of the DES Y1
posterior in Section 5.1, demonstrating that our ap-

4 http://www.cosmostat.org/software/nicaea

http://www.cosmostat.org/software/nicaea
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proach is able to start from approximative guesses that

only partially fall within the vicinity of the target poste-

rior and are not necessarily based on calculations using

the actual target in question.
Making use of Gaussbock’s innate embarrassing par-

allelism, we run this experiment on supercomputing fa-

cilities of the National Energy and Scientific Research

Computing Center (NERSC)5 (He et al. 2018). We run

on 32 nodes of the Cori computer, for a total of 1024
cores and 2048 threads. The results below were gener-

ated in approximately two hours in this configuration,

showcasing the total runtime advantage of our approach.

With the runtime scaling being inversely linear with the
number of cores, up to the number of samples used per

iteration due to the model-fitting process not requiring

a lot of time, up to 15000 cores can be used in an ide-

alized scenario for our experimental setup to gain a fur-

ther order-of-magnitude reduction. In order to make
use of existing posterior implementations, we employ

CosmoSIS to use Gaussbock with the DES Y1 posterior

(Zuntz et al. 2015).

Table 3 lists the cosmological parameters as estimated
by both Gaussbock and its comparison baseline, mean-

ing the fiducial MultiNest run, demonstrating a satis-

factory level of agreement for both means and credible

intervals. In addition to the cosmological parameters

shown in the experiments for Figures 2 and 6, the ta-
ble also includes the scalar spectral index ns and the

massive neutrino density ων , covering the full set of cos-

mological parameters previously listed in Table 2.

Table 3. Cosmological parameters for DES Y1 data. The
table shows figures of merit for common cosmological pa-
rameters used in the original DES Y1 experiments, with the
latter’s implementation of MultiNest and, for comparison,
the results for a highly parallel Gaussbock run.

Parameter MultiNest Gaussbock

Ωm 0.276+0.031
−0.031 0.275+0.029

−0.026

H0 0.787+0.080
−0.106 0.781+0.078

−0.080

Ωb 0.056+0.010
−0.012 0.057+0.009

−0.013

ns 1.020+0.043
−0.064 1.013+0.043

−0.065

As 2.470+0.510
−0.440 × 10−9 2.430+0.420

−0.400 × 10−9

ων 5.100+2.900
−2.800 × 10−3 5.000+3.000

−2.800 × 10−3

Figure 6 shows the posterior contours for both the

d l3 rerun with MultiNest and the Gaussbock result

5 https://www.nersc.gov

in red and blue, respectively. Both matter and baryon

density parameters, Ωm and Ωb, are shown to match

the baseline computation well, whereas the Hubble pa-

rameter H0 and scalar amplitude of density fluctuations
As are in reasonable agreement, but do not correctly

recover the tails of the posterior distribution. An explo-

ration of the 26-dimensional approximation shows that

Gaussbock accurately models the parameters which are

well-constrained, but fails to recover the tails on uncon-
strained parameters likeH0 and Aa that have very broad

intervals, as listed in Table 2. Where possible, it might

help to provide narrower constraints for such parame-

ters. In addition, Figure 6 shows the joint posterior of
the two intrinsic alignment parameters, AIA and µIA in

the right panel.

The results demonstrate the ability of Gaussbock to

recover non-Gaussian shapes of correlated parameters to

a high degree of accuracy, as can be seen in the 2D pos-
terior shapes for the fiducial MultiNest and Gaussbock

runs, as well as in the agreement between histograms in

the figure. The effective sample size for this Gaussbock

run is Neff = 2104, compared to Neff = 4316 for the
original MultiNest chain, although with a smaller over-

all runtime for our algorithm.

While the results are not in near-perfect agreement,

as is the case for the fast truncated Gaussian approxi-

mation in Section 5.1, a trade-off between considerably
reduced runtime and accuracy is to be expected anal-

ogous to the No Free Lunch Theorem in optimization

(Wolpert & Macready 1997). The described experiment

on the full DES Y1 posterior makes use of Gaussbock’s
adaptive default behavior and, for the number of sam-

ples per iteration, is based on our fast approximation,

so fine-tuning to a specific application case can be ex-

pected to further improve the performance of the algo-

rithm. Other reasons for the results not showing the
same goodness of fit for all parameters, as observed in

Section 5.1, are a diminished smoothness of posteriors

and less Gaussian tails, which we discuss in Section 6.

5.4. Stress tests on additional distributions

In this subsection we run Gaussbock on distributions
with more challenging features to determine when it

starts to fail. As outlined in Section 4, KDE is a pow-

erful density estimation technique, but faces issues in

higher-dimensional problems (O’Brien et al. 2016). In

this experiment, we exemplify the built-in default to
use KDE for problems in which dim(D) ≤ 2, allowing

Gaussbock to make use of the method most suitable to

a given problem. For this purpose, we construct a pos-

terior of three approximately equilateral triangles with
a flat posterior surface, meaning that posterior values

https://www.nersc.gov
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Figure 6. DES Y1 posteriors with Gaussbock. The left panel depicts the matter density parameter (Ωm) versus the Hubble
constant (H0), the middle figure shows the baryon density parameter (Ωb) versus the scalar amplitude of density fluctuations
(As), and the right figure shows the two intrinsic alignment parameters (AIA, µIA). Contours for the importance-weighted
samples generated with Gaussbock are drawn in blue, with contours for the original nested sampling implementation as used by
DES drawn in red. Darker and lighter shaded contour areas depict the 68% and 95% credible intervals, respectively, with the
same levels shaded in the histograms.

are uniform across the triangle shapes. Due to the con-

vergence criterion of Gaussbock, which we discuss in

Section 3, being geared toward the use of a VBGMM

as its primary application in high-dimensional setting,

we set the number of iterations to 20. We let the initial
sample guess be generated automatically with the same

number as for previous experiments in Section 5.1, and

let Gaussbock use its default behavior for optional in-

puts.

Figure 7. Approximation of a hard-to-estimate posterior
with Gaussbock. The two-dimensional posterior distribution
features uniform values across the surface of three triangles.
With a completely flat distribution of the posterior shape,
the importance-weighted sample contours in the plot show
the 95% credible interval for the generated samples.

The results of this low-dimensional parameter estima-

tion experiment is shown in Figure 7, with 95% cred-

ible intervals for the flat-surface posterior demonstrat-

ing the ability of Gaussbock to approximate complex

shapes with pronounced edges and corners. The three
separate triangles are clearly reconstructed through the

importance-weighted samples generated by the algo-

rithm, validating its integrated KDE functionality for

low-dimensional estimation problems.
Next, we consider similar stress tests based on those

described in Hobson & Feroz (2008) and Feroz et al.

(2009). First, we test with a posterior in the form of a

double Gaussian shell, as described in Allanach & Lester

(2008),

L(θ) = C(θ; c1, w, r) + C(θ; c2, w, r), (10)

where

C(θ; c, w, r) = N (|θ − c| ; r, w2). (11)

At low dimensions, Gaussbock can sample effectively

from such a distribution; the results from a 2D example
with w = 0.1 and r = 2 are shown in Figure 8. The sam-

ples correctly trace the distribution, with a close-to-ideal

match between the brute-force percentiles and the frac-

tion of samples inside them. At moderate dimensions,
from around 5D, Gaussbock fails on the sharp edges in

this distribution, as the required number of Gaussians

to capture the full shape becomes too high.

Next, we consider sharp edges that are poorly fit by

Gaussian mixtures as another possible failure cases. We
sample from

L =







exp−2 · |x|, if ∀x ∈ x : x > 0

0, else
(12)
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Figure 8. Samples from a 2D Gaussian shell distribu-
tion. The upper panel shows a scatter plots of the result-
ing Gaussbock samples, while the lower panel zooms in on
one of the two shells. For the latter, we show inner 68%
and outer 95% contours from a brute-force grid evaluation
in black, and KDE on Gaussbock samples as blue-shaded re-
gions, with darker and lighter shaded contour areas depicting
the 68% and 95% credible intervals, respectively. At higher
dimensions, Gaussbock fails on such distributions.

using a 4D example. This form has a sharp edge at

xi = 0 in each dimension. Figure 9 shows the 1D distri-

bution of one of the four parameters, as sampled using

Gaussbock, emcee, and a brute-force evaluation. Both
samplers undersample at this boundary6, and this effect

will worsen for Gaussbock at higher dimension.

Finally, as a multimodal example, we consider sets of

identical Gaussians, with centers arranged in a Latin

6 Many sampling methods based on Markov chains can suffer
from repulsive effects at sharp edges of distributions, since pro-
posals to points near the boundary can only happen from one
direction; a variety of methods have been used to correct for this
behavior (Ahmadian et al. 2011).

Figure 9. Sampling behavior of Gaussbock on the distribu-
tion in Equation 12, with a sharp boundary in 4D, compared
to a long-chained emcee run and a brute-force evaluation.
Both samplers underestimate the PDF near the edge, al-
though Gaussbock maintains a slightly smoother adherence
to the true distribution otherwise.

hypercube formation so that they do not overlap in any

dimension. The algorithm, starting from a random scat-

tering throughout the space, finds all the modes for di-

mensions up to about six, as shown in Figure 10. At
higher dimensions, the algorithm often misses some of

the modes; this is an important failure case that is based

in the reliance on an initial sample provided by either

the built-in affine-invariant MCMC sampler or a method
of choice. If the latter fails to catch at least part of some

modes, the algorithm is unlikely to recover them.

It should be noted that most distributions found in the

additional tests of this section are not usually found in

the intended field of application, cosmological parameter
estimation, but serve as a demonstration of the method’s

capabilities for classical tests found in the statistical lit-

erature, and could be of use in other application areas.

6. DISCUSSION

The primary advantage of our approach is the con-
siderable reduction in the required runtime, given a

large-enough number of cores available for paralleliza-

tion. This strength offers a way to tackle increasing

complexities in cosmological parameter estimation for

current and upcoming surveys such as LSST and Euclid
(Amendola et al. 2018). Since cosmological parameter

estimation efforts rely on computationally costly poste-

rior evaluations, the embarrassing parallelization of their

calculation allows for an immense speed-up in compari-
son to standard MCMC approaches. This reduction in

total runtime comes, however, at the cost of an increase

in the required core time, meaning the number of com-
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Figure 10. A 2D projection of a six-dimensional distribu-
tion with six Latin hypercube-located Gaussian modes. We
show a KDE on Gaussbock samples as yellow-shaded regions,
with darker and lighter shaded contour areas depicting the
68% and 95% credible intervals, respectively. The algorithm
typically finds all the modes up to about 6D, and then be-
gins to miss them at higher dimensions due to the difficulty
of catching them in the initial sample generation..

puting hours necessary to achieve suitable results. For

this reason, and assuming a sufficiently costly posterior

evaluation, making use of Gaussbock’s parallelization
capabilities is a requirement rather than an optional fea-

ture, as demonstrated in Section 5.3.

A direct comparison to MCMC methods is a double-

edged sword in that such methods, run for a very large
number of steps, provide a close fit to the true posterior.

The downside of MCMC approaches is that they tend to

not scale well with the number of dimensions, and that

they are only parallelizable over the number of walkers.

This means that computationally expensive likelihoods
provide an obstacle to implementations such as emcee

(Foreman-Mackey et al. 2013). While nested sampling

methods circumvent this restriction by requiring fewer

posterior evaluations, they rely on assumptions about
perfect and independent samples and can sometimes un-

derestimate an asymptotically Gaussian sampling error.

In many cases, though, they can be highly effective, for

both posterior and evidence estimation, depending on

the problem at hand (Chopin & Robert 2010).
As mentioned in Section 5.3, posteriors based on real-

world survey data may have a less smooth posterior sur-

face, which can hamper the effectiveness of the trun-

cated SIR step used in our approach. Adjusting the

‘truncation alpha’ input can alleviate this issue for iso-

lated samples with higher posterior values, although a

more effective solution is to increase the number of sam-
ples drawn from the posterior approximation of a given

iteration of the algorithm. This approach does, in turn,

require either a correspondingly larger number of cores

or additional runtime. Alternatively, the initial sample

guess to which the first-iteration model is fitted can be
based on a longer-chain emcee run. As a result, this ap-

proach offers a better approximation of the posterior to

start from, as it more closely resembles the target distri-

bution and leads to broader coverage of relevant areas.
We hope that the presented work will lead to further

investigations of this and related parallelized iterative

approaches to parameter estimation, alleviating the is-

sues arising from increased computational demands in

inference based on modern surveys.
Apart from cases with sufficiently smooth posteriors

and well-constrained parameters, Gaussbock also offers

a way to quickly approximate a posterior to reasonable

degrees. For this purpose, we recommend using either
uniform-random samples from an n-sphere scaled to the

admissible ranges or, if feasible, samples from a better-

suited distribution like an n-dimensional Gaussian to

provide an initial sample guess covering the posterior

area. The reason for such approaches is the elimination
of the need for computationally more expensive sam-

ple guess generators such as short-chained emcee runs,

which require costly evaluations of the posterior. While

short chains are fast in comparison to exhaustive runs
of MCMC methods, runtimes should be kept to a mini-

mum for fast approximations in order to provide an edge

in speed over alternative approaches.

An additional use case pertains to lower-dimensional

problems, or scenarios with posterior evaluations that
are sufficiently cheap to compute, and offers a way to

achieve very tight fits to posteriors that are hard to ap-

proximate and feature clean cuts, with an example given

in Section 5.4 and one commonly-encountered example
of such posterior shapes being truncated Gaussians. The

suitability for the latter type also extends to higher di-

mensions, as we demonstrate with the truncated Gaus-

sian approximation of the 26-dimensional DES Y1 pos-

terior in Section 5.1. For the latter, as described in
Section 5.3, an important finding is that Gaussbock ac-

curately models well-constrained parameters, but can

have trouble to recover the tails on unconstrained pa-

rameters perfectly. For that reason, setting sensible pa-
rameter constraints as one of the three required inputs

to the implementation is strongly advised.
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Unlike in most MCMC methods, the final mixture

model is an optional output of our implementation,

which can be saved and used again at a later point. It

can act as an approximate but analytic description of the
posterior, allowing, for example, the subsequent drawing

of an arbitrary number of samples for which importance

weights can be calculated and which can be easily dis-

seminated. In this context, our approach offers a way to

easily exchange and compare posterior approximations
based on different datasets, with mixture models whose

components can be combined.

For common problems faced by contemporary research

in cosmology, Gaussbock offers a considerable speed-up.
This is especially relevant for upcoming missions with

larger numbers of parameters, for which our approach

provides a way to quickly compute high-fidelity poste-

rior approximations and the underlying mixture model.

While, in this work, we use a wrapper to run Gaussbock

through CosmoSIS on NERSC facilities, a complete in-

tegration into CosmoSIS will further enhance the ease

of access to our methodology. Regarding the scaling

behavior tested in Section 5.2, a higher number of di-
mensions leads to a higher number of iterations to reach

convergence, as demonstrated in Figure 4. Gaussbock

also benefits from an as-close-as-possible fit to the true

posterior for the initial sample to start from. In cases

in which such a sample guess is available, it lends an
advantage to the method’s performance when compared

to using the built-in affine-invariant MCMC sampler.

Notably, the ability to feed an arbitrary set of initial

samples into the tool also means that Gaussbock can be
combined with any sampling algorithm to create such

an initial sample, allowing users to employ cutting-edge

methods of their choice to make full use of the current

statistical literature and personal preferences.

In terms of its internal functionality, our approach in-
herently lends itself to combating issues with defaulting

cores, as the failure or a subset of processes to return

importance values can be safely ignored. The respective

parameter sets can simply be omitted from the set of
samples used to approximate the posterior in a given it-

eration, using the large-enough amount of remaining pa-

rameter sets to fit the model in a given iteration. While

the capability to do so is not part of our implementation

and is primarily of interest for large-scale cloud comput-
ing, our code easily lends itself to being extended toward

this safety redundancy.

7. CONCLUSION

In this paper, we introduce and apply Gaussbock,

a novel approach to cosmological parameter estimation
that makes use of recent advances in machine learning

and statistics. By coupling variational Bayesian GMMs

with a truncation-based extension of importance sam-

pling in an iterative approach with a convergence crite-

rion, our method offers an embarrassingly parallel way
to achieve high-speed parameter estimation for problems

with computationally expensive likelihood calculations.

We initially test Gaussbock on a fast approximation of

the DES Y1 posterior to demonstrate its capabilities on

a high-dimensional realistic example, and to investigate
scaling relations and the effectiveness of the convergence

criterion, both of which prove to be well-behaved. We

then apply our method to the full DES Y1 posterior,

making use of Gaussbock’s built-in MPI capabilties to
run it on NERSC supercomputing facilities. The results

showcase the immense speed-up that constitutes the pri-

mary strength of our method, achieving a good fit to the

original DES approach of using MultiNest.

While achieving excellent fits in most cases across our
experiments, we observe that less Gaussian posteriors

of unconstrained parameters result in a slightly worse

fit to the tails of the distribution and discuss the po-

tential issues arising from less smooth posterior sur-
faces. In addition, we stress-test the algorithm using

more complex distributions. We also demonstrate that

Gaussbock achieves tight fits to hard-to-approximate

posteriors such as double Gaussian shells, scattered mul-

tivariate Gaussians, and exponential distributions in
lower dimensions. The reliance on an initial sample

guess roughly covering the areas of interest, however,

means that it will break down if the latter is not the

case, for example if modes of a multivariate distribu-
tion are not caught in that initial sample. In addition,

we verify that our method, like other parameter esti-

mation techniques based on Gaussian mixture models,

is limited by the degree to which distributions can be

formalized as a weighted mixture of Gaussians, which
becomes problematic if, for example, facing Gaussian

shells of moderate to high dimensionality.

We implement Gaussbock as a pure-Python package

to conduct our experiments described in this paper. In
doing so, we also provide the astronomy community

with a user-friendly and readily installable implemen-

tation of Gaussbock, bearing the same name. While

our method is developed specifically with contemporary

parameter estimation problems in cosmology in mind, it
represents a general-purpose inference tool applicable to

many problems dealing with high-dimensional parame-

ter estimation with computationally costly posteriors.

As a result, our work contributes to the wider field of
estimation theory in addition to current and upcoming

astronomical surveys.
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