31 research outputs found

    Automatic segmentation of MR brain images with a convolutional neural network

    Full text link
    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure that the method obtains accurate segmentation details as well as spatial consistency, the network uses multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale information about each voxel. The method is not dependent on explicit features, but learns to recognise the information that is important for the classification based on training data. The method requires a single anatomical MR image only. The segmentation method is applied to five different data sets: coronal T2-weighted images of preterm infants acquired at 30 weeks postmenstrual age (PMA) and 40 weeks PMA, axial T2- weighted images of preterm infants acquired at 40 weeks PMA, axial T1-weighted images of ageing adults acquired at an average age of 70 years, and T1-weighted images of young adults acquired at an average age of 23 years. The method obtained the following average Dice coefficients over all segmented tissue classes for each data set, respectively: 0.87, 0.82, 0.84, 0.86 and 0.91. The results demonstrate that the method obtains accurate segmentations in all five sets, and hence demonstrates its robustness to differences in age and acquisition protocol

    Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    No full text
    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Automatic segmentation of the preterm neonatal brain with MRI using supervised classification

    No full text
    Cortical folding ensues around 13-14 weeks gestational age and a qualitative analysis of the cortex around this period is required to observe and better understand the folds arousal. A quantitative assessment of cortical folding can be based on the cortical surface area, extracted from segmentations of unmyelinated white matter (UWM), cortical grey matter (CoGM) and cerebrospinal uid in the extracerebral space (CSF). This work presents a method for automatic segmentation of these tissue types in preterm infants. A set of T1- and T2-weighted images of ten infants scanned at 30 weeks postmenstrual age was used. The reference standard was obtained by manual expert segmentation. The method employs supervised pixel classification in three subsequent stages. The classification is performed based on the set of spatial and texture features. Segmentation results are evaluated in terms of Dice coefficient (DC), Hausdorff distance (HD), and modified Hausdorff distance (MHD) defined as 95th percentile of the HD. The method achieved average DC of 0.94 for UWM, 0.73 for CoGM and 0.86 for CSF. The average HD and MHD were 6.89 mm and 0.34 mm for UWM, 6.49 mm and 0.82 mm for CoGM, and 7.09 mm and 0.79 mm for CSF, respectively. The presented method can provide volumetric measurements of the segmented tissues, and it enables quantification of cortical characteristics. Therefore, the method provides a basis for evaluation of clinical relevance of these biomarkers in the given population. © 2013 SPIE

    Automatic segmentation of the preterm neonatal brain with MRI using supervised classification

    No full text
    Cortical folding ensues around 13-14 weeks gestational age and a qualitative analysis of the cortex around this period is required to observe and better understand the folds arousal. A quantitative assessment of cortical folding can be based on the cortical surface area, extracted from segmentations of unmyelinated white matter (UWM), cortical grey matter (CoGM) and cerebrospinal uid in the extracerebral space (CSF). This work presents a method for automatic segmentation of these tissue types in preterm infants. A set of T1- and T2-weighted images of ten infants scanned at 30 weeks postmenstrual age was used. The reference standard was obtained by manual expert segmentation. The method employs supervised pixel classification in three subsequent stages. The classification is performed based on the set of spatial and texture features. Segmentation results are evaluated in terms of Dice coefficient (DC), Hausdorff distance (HD), and modified Hausdorff distance (MHD) defined as 95th percentile of the HD. The method achieved average DC of 0.94 for UWM, 0.73 for CoGM and 0.86 for CSF. The average HD and MHD were 6.89 mm and 0.34 mm for UWM, 6.49 mm and 0.82 mm for CoGM, and 7.09 mm and 0.79 mm for CSF, respectively. The presented method can provide volumetric measurements of the segmented tissues, and it enables quantification of cortical characteristics. Therefore, the method provides a basis for evaluation of clinical relevance of these biomarkers in the given population. © 2013 SPIE

    Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants

    Get PDF
    Introduction The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual age (PMA). Methods In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically segmented. Based on these segmentations, cortical descriptors evaluating volume, surface area, thickness, gyrification index, and global mean curvature were computed at both time points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes separately. Additionally, visual scoring of brain abnormality was performed using a conventional scoring system at 40 weeks PMA. Results The evaluated descriptors showed larger change in the occipital lobes than in the other lobes. Moreover, the cortical descriptors showed an association with the abnormality scores: gyrification index and global mean curvature decreased, whereas, interestingly, median cortical thickness increased with increasing abnormality score. This was more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30 and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay in cortical development

    Automatic segmentation of MR brain images with a convolutional neural network

    No full text
    \u3cp\u3eAutomatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure that the method obtains accurate segmentation details as well as spatial consistency, the network uses multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale information about each voxel. The method is not dependent on explicit features, but learns to recognise the information that is important for the classification based on training data. The method requires a single anatomical MR image only. The segmentation method is applied to five different data sets: coronal T2-weighted images of preterm infants acquired at 30 weeks postmenstrual age (PMA) and 40 weeks PMA, axial T2- weighted images of preterm infants acquired at 40 weeks PMA, axial T1-weighted images of ageing adults acquired at an average age of 70 years, and T1-weighted images of young adults acquired at an average age of 23 years. The method obtained the following average Dice coefficients over all segmented tissue classes for each data set, respectively: 0.87, 0.82, 0.84, 0.86 and 0.91. The results demonstrate that the method obtains accurate segmentations in all five sets, and hence demonstrates its robustness to differences in age and acquisition protocol.\u3c/p\u3

    Deep learning for multi-task medical image segmentation in multiple modalities

    No full text
    Automatic segmentation of medical images is an important task for many clinical applications. In practice,a wide range of anatomical structures are visualised using different imaging modalities. In this paper,we investigate whether a single convolutional neural network (CNN) can be trained to perform different segmentation tasks. A single CNN is trained to segment six tissues in MR brain images,the pectoral muscle in MR breast images,and the coronary arteries in cardiac CTA. The CNN therefore learns to identify the imaging modality,the visualised anatomical structures,and the tissue classes. For each of the three tasks (brain MRI,breast MRI and cardiac CTA),this combined training procedure resulted in a segmentation performance equivalent to that of a CNN trained specifically for that task,demonstrating the high capacity of CNN architectures. Hence,a single system could be used in clinical practice to automatically perform diverse segmentation tasks without task-specific training

    Automatic segmentation of MR brain images of preterm infants using supervised classification

    No full text
    \u3cp\u3ePreterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images. This paper presents an algorithm for the automatic segmentation of unmyelinated white matter (WM), cortical grey matter (GM), and cerebrospinal fluid in the extracerebral space (CSF). The algorithm uses supervised voxel classification in three subsequent stages. In the first stage, voxels that can easily be assigned to one of the three tissue types are labelled. In the second stage, dedicated analysis of the remaining voxels is performed. The first and the second stages both use two-class classification for each tissue type separately. Possible inconsistencies that could result from these tissue-specific segmentation stages are resolved in the third stage, which performs multi-class classification. A set of T1- and T2-weighted images was analysed, but the optimised system performs automatic segmentation using a T2-weighted image only. We have investigated the performance of the algorithm when using training data randomly selected from completely annotated images as well as when using training data from only partially annotated images. The method was evaluated on images of preterm infants acquired at 30 and 40weeks postmenstrual age (PMA). When the method was trained using random selection from the completely annotated images, the average Dice coefficients were 0.95 for WM, 0.81 for GM, and 0.89 for CSF on an independent set of images acquired at 30weeks PMA. When the method was trained using only the partially annotated images, the average Dice coefficients were 0.95 for WM, 0.78 for GM and 0.87 for CSF for the images acquired at 30weeks PMA, and 0.92 for WM, 0.80 for GM and 0.85 for CSF for the images acquired at 40weeks PMA. Even though the segmentations obtained using training data from the partially annotated images resulted in slightly lower Dice coefficients, the performance in all experiments was close to that of a second human expert (0.93 for WM, 0.79 for GM and 0.86 for CSF for the images acquired at 30weeks, and 0.94 for WM, 0.76 for GM and 0.87 for CSF for the images acquired at 40weeks). These results show that the presented method is robust to age and acquisition protocol and that it performs accurate segmentation of WM, GM, and CSF when the training data is extracted from complete annotations as well as when the training data is extracted from partial annotations only. This extends the applicability of the method by reducing the time and effort necessary to create training data in a population with different characteristics.\u3c/p\u3

    Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants

    No full text
    Introduction: The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual age (PMA). Methods: In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically segmented. Based on these segmentations, cortical descriptors evaluating volume, surface area, thickness, gyrification index, and global mean curvature were computed at both time points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes separately. Additionally, visual scoring of brain abnormality was performed using a conventional scoring system at 40 weeks PMA. Results: The evaluated descriptors showed larger change in the occipital lobes than in the other lobes. Moreover, the cortical descriptors showed an association with the abnormality scores: gyrification index and global mean curvature decreased, whereas, interestingly, median cortical thickness increased with increasing abnormality score. This was more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30 and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay in cortical development
    corecore