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Abstract

Introduction

The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants,

brain development is very vulnerable because of their often complicated extra-uterine con-

ditions. The aim of this study was to quantitatively describe cortical development in a cohort

of 85 preterm infants with and without brain injury imaged at 30 and 40 weeks postmenstrual

age (PMA).

Methods

In the acquired T2-weighted MR images, unmyelinated white matter (UWM), cortical grey

matter (CoGM), and cerebrospinal fluid in the extracerebral space (CSF) were automatically

segmented. Based on these segmentations, cortical descriptors evaluating volume, surface

area, thickness, gyrification index, and global mean curvature were computed at both time

points, for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes

separately. Additionally, visual scoring of brain abnormality was performed using a conven-

tional scoring system at 40 weeks PMA.

Results

The evaluated descriptors showed larger change in the occipital lobes than in the other

lobes. Moreover, the cortical descriptors showed an association with the abnormality

scores: gyrification index and global mean curvature decreased, whereas, interestingly,

median cortical thickness increased with increasing abnormality score. This was more pro-

nounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the period between 30

and 40 weeks PMA might provide a window of opportunity for intervention to prevent delay

in cortical development.
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Introduction
During the third trimester of pregnancy, the cerebral cortex develops from a smooth surface to
a folded structure with high complexity, resembling the morphology of the adult cortex [1]. In
preterm infants, neurodevelopment is particularly vulnerable due to extra-uterine complica-
tions, leading to primary brain injury and secondary developmental consequences [2–4].

In this population, it has been described that the development of the cerebral cortex, with
respect to changes in surface area [5,6] and cortical folding [7], might be related to functional
and cognitive development. Furthermore, preterm infants exhibit abnormal development of
cortical thickness when measured in adolescence [8–10]. In normal development, thinning of
the cerebral cortex by pruning of dispensable neurons and synapses, leading to more efficient
synaptic connections, occurs during childhood and adolescence [11–14] and continues with
aging [15,16]. In preterm infants, this process seems to be disturbed [10]. Some studies found
that preterm infants have larger cortical grey matter (CoGM) volumes compared to healthy
infants in several regions at term equivalent age [17,18], and in adolescence [19], while others
found smaller volumes [20]. Padilla et al. [18] found that preterm infants without focal brain
lesions have decreased CoGM volume over the whole brain, but increased grey matter volumes
in the occipital lobes.

It has been described that white matter injury (the most common type of brain injury in
preterm infants), varying from cystic periventricular leukomalacia, punctate unmyelinated
white matter (UWM) lesions, to diffuse UWM injury, may have secondary maturational and
trophic consequences due to axonal damage, affecting the microstructural integrity and con-
nectivity between thalamus and cortex [3,4]. This might disturb the early formation, develop-
ment and maturation of the cerebral cortex.

Magnetic resonance imaging (MRI) is of additional value in indicating infants at the high-
est risk of neurodevelopmental impairments. Quantitative assessment of cortical develop-
ment based on MRI, describing volume, cortical surface area, cortical thickness, and cortical
folding could potentially aid in evaluating development. These quantitative descriptors and
their longitudinal change are interesting when investigated in specific brain regions, in
infants with normal development, as well as in cases with brain injury. Altered cortical devel-
opment of preterm infants has been mainly reported at term equivalent age, childhood, or
adolescence [10,18,19,21]. Longitudinal imaging prior to term equivalent age, when most
changes take place, is lacking.

The aim of this study is to quantitatively describe morphological changes of the cerebral
cortex in a unique cohort of extremely preterm infants with and without brain injury, with clin-
ically acquired longitudinal MR images at 30 and 40 weeks postmenstrual age (PMA).

Data
This study included 117 longitudinally scanned preterm infants. After exclusion of 17 infants
who had at least one image of non-diagnostic quality, e.g. due to movement artefacts, and 15
infants with severe brain injury resulting in inaccurate automatic segmentations, a set of 85
infants, with good quality longitudinal images, remained. These infants had an average gesta-
tional age of 26.6 ± 1.0 weeks at birth (range: 24.4─27.9 weeks), were 30.7 ± 0.8 week PMA
(range: 28.7─32.7 weeks) at the first scan, and 41.1 ± 0.5 weeks PMA (range: 40.0─42.7 weeks)
at the second scan. Imaging was performed in accordance with standard clinical practice at the
Neonatal Intensive Care Unit of the Wilhelmina Children’s Hospital of the University Medical
Center Utrecht, The Netherlands. Detailed patient information is listed in Table 1. All patients
were sedated with oral chloral hydrate (30─60 mg/kg). Coronal T2-weighted images were
acquired on a Philips Achieva 3T scanner (Philips Medical Systems, Best, The Netherlands)
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with multislice 2D turbo spin echo sequences, using an echo time of 120 ms at 30 weeks and
150 ms at 40 weeks, and a repetition time of 10085 ms at 30 weeks and 4847 ms at 40 weeks.
The images were reconstructed to voxel sizes of 0.34 × 0.34 × 2.0 mm3 at 30 weeks PMA and
0.35 × 0.35 × 1.2 mm3 at 40 weeks PMA.

Permission from the medical ethical review committee of the University Medical Center
Utrecht (MERC UMC Utrecht) for the current study and informed parental consent for the
MRI was obtained. Patient data were anonymised prior to the analysis. Since this was a retro-
spective study, using MR images performed as part of standard clinical care, oral consent for
the MRI was obtained by the treating physician and any questions or remarks were noted in
the charts. No written consent was deemed necessary. The MERC UMC Utrecht waived the
need for parental consent for both the use of medical data and for publication of medical
images.

All MR images acquired at 40 weeks PMA were scored for brain injury using the assessment
tool presented by Kidokoro et al. [2]. This scoring system evaluated unmyelinated white matter
abnormality, cortical grey matter abnormality, deep grey matter abnormality, cerebellar abnor-
mality, and total brain abnormality. It included visual assessment as well as manual 2D
measurements.

Based on the score, the patients were divided in four classes: normal, mild, moderate, and
severe. For total brain abnormality this resulted in: 35 patients in the normal class, 42 in the
mild class, 7 in the moderate class, 1 in the severe class. For CoGM abnormality this resulted
in: 27 patients in the normal class, 35 in the mild class, 18 in the moderate class, and 5 in the
severe class. Because of the small number of patients in the severe classes, the moderate and
severe classes were combined in the statistical evaluation.

The interhemispheric fissure width, which was part of the cortical grey matter abnormality
score, is recognised as a measure of cerebral atrophy [22] and is therefore also investigated
separately.

Methods
To enable analysis of the cortex, UWM, CoGM, and cerebrospinal fluid in the extracerebral
space (CSF) were automatically segmented in the coronal T2-weighted images. Subsequently,
the brain was divided into frontal, temporal, parietal, and occipital lobes. Finally, the automatic
segmentations and parcellations were used to calculate quantitative descriptors characterising
cortical development in the whole cohort. A pilot study using these quantitative descriptors
has been described by Moeskops et al. [23].

Table 1. Patient information and the number of patients with brain injury in this cohort.

Number of patients 85

Male/female 42/43

Intraventricular haemorrhage grade I 10 (11.8%)

Intraventricular haemorrhage grade II 13 (15.3%)

Intraventricular haemorrhage grade III 5 (5.9%)

Posthaemorrhagic ventricular dilation 4 (4.7%)

Punctate white matter lesions (> 6) 2 (2.4%)

Cerebellar lesions (> 6) or cerebellar haemorrhage 3 (3.5%)

Lenticulostriate infarction 3 (3.5%)

No patients with cystic periventricular leukomalacia and no patients with periventricular haemorrhagic

infarction were found in this cohort.

doi:10.1371/journal.pone.0131552.t001
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3.1. Segmentation and parcellation
UWM, CoGM and CSF were automatically segmented in the coronal T2-weighted images
using a recently presented supervised classification method [24]. The method has been evalu-
ated in the Neonatal Brain Segmentation challenge (NeoBrainS12), a study comparing the per-
formance of algorithms for automatic neonatal brain segmentation [25]. The results on images
acquired with the same protocol as used in this study are available at http://neobrains12.isi.uu.
nl/mainResults.php and show better performance of this method compared to other methods.
An example of a CoGM segmentation result in images acquired at 30 and 40 weeks PMA of the
same patient is illustrated in Fig 1.

To enable localised analysis, we have automatically parcellated both the right and the left
hemisphere of the MR brain images into frontal, temporal, parietal, and occipital lobes, i.e.
eight regions, using registration of an annotated template image. An example of a resulting
automatic parcellation for the images acquired at 30 and 40 weeks PMA is shown in Fig 2.
Details of this procedure can be found in S1 Methods.

3.2. Quantification of cortical morphology
Based on the automatic segmentation results, several quantitative descriptors were computed.
No further topological correction [26] was performed before these computations. UWM,
CoGM, and CSF volumes were determined, and the inner and outer CoGM surface areas were
estimated using a voxel-based approach that assigns a weight to each voxel on the surface
based the configuration of its neighbouring voxels [27]. Furthermore, cortical thickness was
computed in 3D following the method described by Jones et al. [28]. Cortical folding was quan-
tified using two different methods: by gyrification index [29] in 3D, and by global mean curva-
ture. The gyrification index was computed as the ratio between the inner CoGM surface and a

Fig 1. Automatic segmentation of CoGM at 30 (top) and 40 weeks PMA (bottom) for the same patient, shown in four slices of the T2-weighted
images.Note that, because of the limited resolution, CSF inside the sulci was not always visible, which resulted in local overestimation of cortical thickness.

doi:10.1371/journal.pone.0131552.g001
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smooth convex hull segmentation [30] around the UWM segmentation. Global mean curva-
ture was computed by normalised summation [31] of the local mean curvature of the inner
and outer CoGM surface combined. An example of the local mean curvature of the inner
CoGM surface is shown in Fig 3. Details of these methods can be found in S1 Methods.

These descriptors were computed for the whole brain as well as for each of the brain regions,
for the images acquired at 30 weeks PMA as well as for the images acquired at 40 weeks PMA.
To evaluate the change between 30 and 40 weeks PMA, longitudinal increase factors were com-
puted for each patient as the ratio between the descriptors at 40 and 30 weeks PMA.

Fig 2. Automatic parcellation of the images acquired at 30 weeks (top) and 40 weeks (bottom) in
frontal (red and orange), temporal (yellow and green), parietal (blue and purple), and occipital (pink
and brown) lobes. The images were scaled separately and therefore do not show change in size of the
brain.

doi:10.1371/journal.pone.0131552.g002

Fig 3. Local mean curvature of the inner cortical surface as obtained by automatic segmentation on
the images acquired at 30 weeks PMA (top) and at 40 weeks PMA (bottom) for one patient.Red
indicates positive curvature, blue indicates negative curvature, and yellow indicates zero curvature. The
images were scaled separately and therefore do not show change in size of the brain.

doi:10.1371/journal.pone.0131552.g003
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3.3. Statistical evaluation
To evaluate whether the descriptors show differences between the brain regions, differences
between the abnormality classes, or differences with respect to the development between 30
and 40 weeks PMA, linear mixed modelling was used to estimate these effects for the descrip-
tors computed from the images acquired at 30 and 40 weeks PMA and from their longitudinal
increase factors. The statistical evaluation was performed in R (version 3.1.1).

Models were made, per descriptor, for the images acquired at 30 weeks PMA, the images
acquired at 40 weeks PMA, and the longitudinal increase factors separately. Categorical vari-
ables were used to describe the hemispheres, the lobes and the abnormality scores. To correct
for differences in age at the time of scanning, the patient age at the time of the scan was
included in the models for the images acquired at 30 weeks, and the time interval between the
two scans was included in the models for the increase factors. No influence of age at the time of
scanning was found for the images acquired at 40 weeks, so age was not included in those mod-
els. Model optimisation was performed based on Akaike’s information criterion [32].

Results
The results are presented for: the images acquired at 30 weeks PMA, the images acquired at 40
weeks PMA, as well as the longitudinal changes between these two time points. The first sub-
section of the results presents the global quantitative descriptors evaluated over the whole
brain, while the second subsection presents these descriptors evaluated per region. In the third
subsection, the descriptors are presented in relation to the abnormality score classes.

4.1. Global evaluation
Fig 4 shows descriptors evaluated over the whole brain versus PMA at the time of scanning,
while Table 2 lists the average values and their increase factors. In a period of 10.4 ± 1.0 weeks
(mean ± standard deviation) the outer UWM surface area (i.e. inner CoGM surface area)
increased by a factor of 3.7, while the UWM volume increased by 1.9. The outer CoGM surface
area increased by a factor of 3.3, and the CoGM volume increased by a factor of 4.6. Cortical
folding increased by factor 1.9, both in terms of gyrification index and in terms of the global
mean curvature of the inner and outer surface. Furthermore, median cortical thickness
increased by a factor of 1.3.

4.2. Regional evaluation
Fig 5 shows boxplots for all regional descriptors in ten regions: the right and left hemispheres,
as well as the right and left frontal, temporal, parietal, and occipital lobes. The average increase
factors between 30 and 40 weeks PMA for these regions are shown in Fig 6. The results of the
statistical evaluation obtained with linear mixed modelling can be found in S1, S2 and S3
Tables.

Evaluation of the calculated descriptors per lobe revealed that the brain does not develop
equally over all regions. For the images acquired at 30 weeks PMA, lower median cortical thick-
ness, gyrification index, and global mean curvature were found for the occipital lobes than for
the whole hemispheres, but these values were higher for the images acquired at 40 weeks PMA.
Furthermore, compared to the whole hemispheres, higher median cortical thickness, gyrifica-
tion index, and global mean curvature were obtained for the parietal lobes at 30 weeks PMA, as
well as higher values for median cortical thickness, and gyrification index at 40 weeks PMA.
When the increase factors of these descriptors between 30 and 40 weeks PMA were compared
(Fig 6), larger increase was found in the occipital lobes for UWM volume, inner cortical surface
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area, median cortical thickness, gyrification index, and global mean curvature. These findings
indicate that more rapid development took place in the occipital part of the brain for all these
descriptors between 30 and 40 weeks PMA than over the whole hemispheres. The parietal
lobes showed larger increase factors for inner cortical surface area, median cortical thickness,
and gyrification index. The temporal lobes only showed larger increase factors for median cor-
tical thickness, and the frontal lobes only for UWM volume and global mean curvature.

4.3. Comparison with abnormality scores
In Fig 7 the global cortical descriptors computed from the images acquired at 30 and 40 weeks
PMA are shown per brain abnormality class. The effects for the patients in these abnormality
classes based on linear mixed modelling are listed in Table 3. Fig 8 shows that the cortical
descriptors acquired at 40 weeks PMA were significantly correlated with the interhemispheric
fissure width, which is part of the CoGM abnornormality scoring and is recognised as a mea-
sure of cerebral atrophy [22]. No significant correlation with interhemipheric fissure width was
found for the images acquired at 30 weeks PMA.

Overall, median cortical thickness increased with increasing abnormality score, while gyrifi-
cation index and global mean curvature decreased with increasing abnormality score. Using α
= 0.05, we found a significant increase in median cortical thickness for the images acquired at
40 weeks PMA when comparing the combined moderate and severe CoGM abnormality class
with the normal class (no abnormality). For the gyrification index, significant decreases were
found when comparing the mild class and the combined moderate and severe abnormality
class with the normal class, for total brain abnormality as well as for CoGM abnormality. For
global mean curvature, a significant decrease was found when comparing the combined mod-
erate and severe CoGM abnormality class with the normal class. For the images acquired at 30
weeks PMA, significant decreases in gyrification index were found for the mild and the com-
bined moderate and severe total brain abnormality classes compared with the normal class,
and a significant decrease in global mean curvature was found for the mild total brain abnor-
mality class compared with the normal class. The same patterns were visible from the

Fig 4. UWM volume (top left), CoGM volume (top right), inner cortical surface area (middle left), median cortical thickness (middle right),
gyrification index (bottom left), global mean curvature (bottom right), for the images acquired at 30 and 40 weeks PMA, shown versus PMA at the
time of scanning. Spearman’s rank correlation coefficients (ρ) and the corresponding p-values are shown for 30 (left) and 40 weeks PMA (right) separately.

doi:10.1371/journal.pone.0131552.g004

Table 2. Mean (μ) and corresponding standard deviation (σ) for the descriptors acquired at 30 and 40 weeks PMA, and their longitudinal increase
factors.

Descriptor 30 weeks PMA (μ ± σ) 40 weeks PMA (μ ± σ) Increase factor (μ ± σ)

UWM volume 93 ± 11 cm3 171 ± 19 cm3 1.9 ± 0.2

CoGM volume 24 ± 4 cm3 107 ± 13 cm3 4.6 ± 0.7

CSF volume 53 ± 9 cm3 120 ± 22 cm3 2.3 ± 0.6

Inner cortical surface area 264 ± 38 cm2 964 ± 91 cm2 3.7 ± 0.4

Outer cortical surface area 277 ± 39 cm2 894 ± 104 cm2 3.3 ± 0.5

Median cortical thickness 1.0 ± 0.0 mm 1.4 ± 0.1 mm 1.3 ± 0.1

Gyrification index 1.4 ± 0.1 2.7 ± 0.1 1.9 ± 0.1

Global mean curvature 2.3 ± 0.4 4.2 ± 0.9 1.9 ± 0.5

The computed descriptors were: UWM volume, CoGM volume, CSF volume, inner cortical surface area, outer cortical surface area, median cortical

thickness, gyrification index, and global mean curvature of the inner and outer cortical surface together.

doi:10.1371/journal.pone.0131552.t002
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Fig 5. Regional evaluation (in terms of standard boxplots) for, from top to bottom: UWM volume, inner cortical surface area, median cortical
thickness, gyrification index, and global mean curvature. The columns show, from left to right: the results for the images acquired at 30 weeks, the
results for the images acquired at 40 weeks, and the ratio between the results for the images acquired at 40 and 30 weeks. Note that, for the descriptors
acquired at 30 and 40 weeks PMA, UWM volume and inner cortical surface area were dependent of the size of the defined regions of the parcellation, while
median cortical thickness, gyrification index, and global mean curvature were independent of size. In every frame the results are shown for the right (R) and
left (L) hemispheres, the right (FR) and left (FL) frontal lobes, the right (TR) and left (TL) temporal lobes, the right (PR) and left (PL) parietal lobes, and the
right (OR) and left (OL) occipital lobes.

doi:10.1371/journal.pone.0131552.g005

Fig 6. Average regional increase factors for both hemispheres visualised on the inner cortical surface
of one randomly chosen patient. The highest increase factor is shown in red and the lowest increase factor
is shown in yellow; the range was set separately per descriptor. Note that this figure provides a visualisation
of the data in the last column of Fig 5.

doi:10.1371/journal.pone.0131552.g006
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longitudinal increase factors between 30 and 40 weeks PMA. No significant influence of UWM
abnormality score was found on the descriptors.

Discussion
This paper evaluated UWM volume, CoGM volume, CSF volume, inner and outer cortical sur-
face area, median cortical thickness, gyrification index, and global mean curvature in preterm
infants with longitudinal imaging. These descriptors have been previously related to the state
of the brain development [5,6,10,30,31,33–40], but thus far, they have not been investigated in
early longitudinal imaging of preterm infants. In agreement with previous findings in cross-
sectional studies, this study showed an increase of all evaluated descriptors between 30 and 40
weeks PMA. Significantly more rapid development occurred in the occipital lobes than in
other regions. Interestingly, a significant increase in cortical thickness and a significant
decrease in cortical folding (in terms of gyrification index and global mean curvature) were
found in infants with higher brain abnormality scores according to Kidokoro et al. [2]. These
effects were more apparent at 40 weeks PMA than at 30 weeks PMA. The results for gyrifica-
tion index and global mean curvature indicated agreement between the descriptors that were

Fig 7. Global cortical morphology descriptors computed from the images acquired at 30 (left) and 40
weeks PMA (right), as a function of total brain (left column) and CoGM abnormality score (right
column). From top to bottom: CoGM volume, median cortical thickness, inner cortical surface area,
gyrification index, global mean curvature. The four abnormality classes are (i) normal, (ii) mild abnormality,
(iii) moderate abnormality, (iv) severe abnormality. Note that there is only one subject in the severe class for
the total brain abnormality score. In the statistical evaluation the moderate and severe classes were
combined for both the total brain abnormality scoring and the CoGM abnormality scoring. Significant
differences with the normal class are indicated with an asterisk (*).

doi:10.1371/journal.pone.0131552.g007

Table 3. Effects of abnormality classes, relative to the normal class, on median cortical thickness, inner cortical surface area, gyrification index,
and global mean curvature, computed from the images acquired at 30 and 40 weeks PMA, estimated with linear mixedmodelling.

Descriptor Abnormality class Effect on descriptor p-value

Median thickness [mm] (40 weeks PMA) CoGM: mild +0.0083 0.5096

CoGM: moderate and severe +0.067 <0.0001*

Inner cortical surface area [cm2] (40 weeks PMA) Total brain: mild -8.7 0.0363*

Total brain: moderate and severe -11.7 0.0967

Gyrification index (40 weeks PMA) Total brain: mild -0.11 0.0011*

Total brain: moderate and severe -0.16 0.0075*

CoGM: mild -0.07 0.0553

CoGM: moderate and severe -0.17 0.0001*

Global mean curvature (40 weeks PMA) CoGM: mild -0.29 0.1910

CoGM: moderate and severe -0.86 0.0008*

Inner cortical surface area [cm2] (30 weeks PMA) Total brain: mild -3.7 0.0096*

Total brain: moderate and severe -2.0 0.3996

Gyrification index (30 weeks PMA) Total brain: mild -0.04 0.0362*

Total brain: moderate and severe -0.12 0.0002*

Global mean curvature (30 weeks PMA) Total brain: mild -0.15 0.0388*

Total brain: moderate and severe -0.06 0.6447

No significant effects of the abnormality score were found for CoGM volume. Significant differences with the normal class are indicated with an asterisk

(*), if none of the classes showed a significant effect the descriptor is not shown in this table.

doi:10.1371/journal.pone.0131552.t003

Development of Cortical Morphology of Preterm Infants Based on MRI

PLOS ONE | DOI:10.1371/journal.pone.0131552 July 10, 2015 12 / 22



automatically extracted from the images and visual scoring, as delayed gyrification is included
in the CoGM abnormality scoring.

5.1. Global brain development
Cross-sectional studies of similar cortical descriptors with preterm neonatal [31,33], as well as
foetal MRI [36,41,42], showed an association with age. In our current study, clear increases
between 30 and 40 weeks PMA were found for all descriptors (Fig 4). An association with
PMA at the time of scanning was found for the images acquired around 30 weeks PMA. This
effect was less visible in the images acquired around 40 weeks PMA. This could indicate that

Fig 8. CoGM volume, median cortical thickness, gyrification index, and global mean curvature computed from the images acquired at 40 weeks
PMA versus the width of the interhemispheric fissure, measured between the crowns of the superior frontal gyri. Spearman’s rank correlation
coefficients (ρ) and the corresponding p-values are shown at the bottom right. No significant correlation was found for inner cortical surface area.

doi:10.1371/journal.pone.0131552.g008
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the extra-uterine environment, or other consequences of preterm birth, did not yet show an
effect on cortical development at 30 weeks PMA, but did have an effect between 30 and 40
weeks PMA, resulting in a larger range of the descriptors at 40 weeks PMA, depending on post-
natal complications. Additionally, cortical development occurs less rapidly around 40 weeks
PMA than around 30 weeks PMA [36], resulting in a less strong influence of PMA at the time
of scanning on the descriptors at 40 weeks PMA than at 30 weeks PMA. No influence of the
gestational age at birth was found on the cortical descriptors for the patients in this study.

To compare the difference between development of preterm infants and normal foetal
development, analysis of control images of healthy newborns needs to be performed. Unfortu-
nately these data are not available, since no ethical approval has been obtained to scan healthy
newborns in our institution so far. Wright et al. [36] recently evaluated different global curva-
ture descriptors applied to foetal MR brain images acquired between 21 and 39 weeks gesta-
tional age. With increasing age, similar increases in these descriptors were shown. This study
did, however, not evaluate cortical thickness.

5.2. Regional brain development
At 40 weeks PMA, the occipital lobes were more mature than the frontal and temporal lobes in
terms of gyrification index and global mean curvature. When the increase factors between 30
and 40 weeks PMA were considered, the largest change took place in the occipital lobes. These
results are in agreement with the literature suggesting that brain development takes place in an
occipital-frontal direction [43–46], which was confirmed by in vivo studies [47–50]. The more
rapid development in the occipital lobes could explain the earlier functional use and activity of
the visual system in preterm infants [18,51,52], in contrast to e.g. behavioural functions involv-
ing the frontal lobes. This is supported by previous work suggesting that early neuronal activity
of preterm infants relates to subsequent brain growth [53]. Consequently, rapid occipital devel-
opment could make this region more vulnerable and might be an explanation for the high risk
of visual dysfunction in preterm infants [54,55].

The right hemisphere was significantly more mature than the left hemisphere in terms of
gyrification index for the images acquired at 30 weeks PMA, as well as the images acquired at
40 weeks PMA. For global mean curvature this was only visible for the images acquired at 30
weeks PMA. This difference between hemispheres corresponds to previous findings in the liter-
ature suggesting that the right hemisphere presents gyral complexity earlier than the left hemi-
sphere [33,56].

5.3. Cortical development and brain injury
An interesting finding was that patients with a higher (CoGM) abnormality score had
increased cortical thickness and decreased cortical folding in terms of gyrification index and
global mean curvature. The difference in thickness is significant, however, it is small: on aver-
age 1.3 vs. 1.4 mm for the images acquired at 40 weeks PMA, given a voxel size of 0.35 mm.
This is a subvoxel difference and therefore difficult to interpret and evaluate visually. Addition-
ally, in this population a positive association was observed between cortical thickness and inter-
hemispheric fissure width measured in 2D (Fig 8), which is part of the CoGM scoring. Cerebral
atrophy, expressed as increased hemispheric fissure width, could be a consequence of diffuse
UWM injury, with injury to premyelinating oligodendrocytes (preOLs) and a deficit in late-
migrating γ-aminobutyric acidergic (GABAergic) neurons. GABAergic neurons are important
contributors to the thickness of the upper cortical layers [3,4,45,57,58]. Therefore, disturbed or
incomplete migration might appear in the images as a less clear distinction between intensities
of UWM and CoGM, which could result in larger cortical thickness estimates. Nosarti et al.
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[19] investigated tissue volumes of preterm infants measured in adolescence, and suggested
that extensive plastic processes might occur to compensate for brain injury, resulting in
increases as well as decreases in CoGM volumes in different regions of the brain.

No significant effect of brain abnormality on CoGM volume was found in this study. The
opposing relations of brain injury on cortical folding and cortical thickness obtained in this
study might be the reason for different findings reported in the literature with respect to
CoGM volume in relation to brain abnormalities [17,18,20]. CoGM volume is influenced by
cortical surface area, thus by cortical folding, as well as cortical thickness. As suggested by ear-
lier literature and by the results of our study, increase in cortical thickness might indicate dis-
ruption of brain development, whereas increase in cortical folding might indicate good
development. Therefore, these two counteracting effects on volume could lead either to no visi-
ble volume differences, or to differences in either direction, depending on which of the effects
is stronger. Hence, CoGM volume alone is likely not a good indicator of cortical development.

The associations of the descriptors with the abnormality scores were less clearly visible for
the images acquired at 30 weeks PMA. This corresponds to the previously mentioned larger
range of the descriptors acquired at 40 weeks PMA (Fig 4), showing larger deviations in devel-
opment than when imaged at 30 weeks PMA, likely influenced by the extra-uterine conditions.
A critical part of brain development takes place between 30 and 40 weeks PMA and distur-
bances such as white matter injury can therefore have a large influence on development, i.e.
result in secondary brain damage. PreOLs are especially vulnerable to hypoxia-ischemia and
inflammation, which are well known processes for white matter injury in preterm infants. As a
result of cell death of preOLs, early oligodendrocyte progenitors proliferate and differentiate
rapidly, but fail to myelinate normally, ultimately resulting in disrupted development of the
cortex as well [59,60]. This damage requires time to develop and become visible and hence the
influence on cortical development would be more apparent at 40 weeks PMA. This means that
the period between 30 and 40 weeks PMAmight offer a window of opportunity for neuropro-
tective interventions.

No significant influence of UWM abnormality scoring was found on these descriptors.
However, interhemispheric fissure width did show a correlation with the cortical descriptors,
which might indicate atrophy, possibly due to diffuse UWM injury. Diffuse UWM injury,
which is difficult to visualise with conventional imaging, is nevertheless known to influence
cortical development [60]. This was further supported by significant differences, in terms of
gyrification index and global mean curvature, between normal and mild abnormality scores
(Fig 7), indicating that mild injury, possibly involving diffuse UWM injury, might have had an
influence on cortical development as well.

The processes behind the development of the cerebral cortex are not yet fully understood.
Suggested factors include: genetics [61,62], neuronal differentiation [63–65] and mechanical
effects [66–70]. However, in the ferret brain, gyrification seems to arise secondary to cortical
processes involving neuronal differentiation [71]. With respect to these mechanical effects,
Toro and Burnod [68] have suggested a morphogenetic model of cortical folding in which cor-
tical growth can induce cortical folding by itself. In contrast to this, another theory suggests
that specific location and shape of sulci are determined by visco-elastic tensions from white
matter tracts connecting cortical regions [67,69,70]. The latter theory might explain why spe-
cific abnormalities in the cortical sulcal pattern are observed in certain brain developmental
disorders in preterm infants [72–74]. These cortical abnormalities might be a consequence of
subtle impairments in neuronal migration and cortico-cortical connections.

In the foetal sheep brain, Rees et al. [75] confirmed delayed gyral formation at mid-gestation
caused by sub-acute hypoxemia, an underlying pathophysiological mechanism often described
in preterm infants. It is often hypothesised that the disability in preterm infants is primarily
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associated with impaired neural connectivity with or without tissue loss or visible WMI. Dean
et al. [76] found that in the foetal sheep brain reversible cerebral ischemia, even without neuro-
nal loss, showed significant diffuse failure of maturation of cortical pyramidal neurons. This
was associated with impaired dendritic growth and synapse formation, consistent with altered
connectivity. Delayed decline in cortical fractional anisotropy (FA) on MRI was associated
with these changes.

Ball et al. [77] reported that preterm infants at term-equivalent age, in the absence of severe
white matter injury, showed a loss of microstructural integrity of the connective white matter
tracts. Very preterm infants exhibit cortical neuroplasticity due to reduced thalamo-cortical
connectivity compared with term-born controls. Clinical and experimental studies are showing
that early WMI is associated with a reduction in cortical complexity. It seems that grey matter
damage due to loss of connections, rather than cell loss, plays a major factor in long-term dis-
ability [78]. Whether disturbances in connectivity, without visible UMW abnormalities, are
related with developmental delay of cortical folding is unclear. Longitudinal MRI studies quan-
tifying cortical development and changes in connectivity with long-term follow-up will provide
more insight.

5.4. Limitations
The presented study has several limitations. First, the resolution of the acquired images is lim-
ited, which resulted in regions where the CSF inside the sulci was not always visible. Therefore,
the outer cortical surface, i.e. the surface between CoGM and CSF, was not always well recog-
nised in these regions. This can also be seen from the average outer cortical surface area com-
puted at 40 weeks PMA (Table 2), which is smaller than the average inner cortical surface area.
Cortical thickness in these regions was therefore sometimes overestimated as well. To reduce
the influence of this effect on the global descriptors for cortical thickness, median values have
been presented. In addition to this, cortical thickness is difficult to estimate based on MRI
because of the ongoing development of the cortex [79]. Second, the evaluated descriptors were
computed fully automatically from the images. This allowed analysis of a large set of images,
but could generate errors human observers do not make. However, the performance of the
applied segmentation method was similar to inter-observer variability as shown in the Neo-
BrainS12 study [25], which suggests that these errors were minimal, and therefore not likely to
have had a large influence on the computed descriptors. Third, it should be noted that the
descriptors used in this study cannot be directly compared across studies, because they are
influenced by several factors such as the acquisition protocol, the segmentation method, the
definition of the tissue types, the definition of the descriptors, and details of the implementa-
tion. A wide range of values was reported in studies that included patients within the same age
range (including studies with foetal imaging and term-born infants). For inner CoGM surface
area, the values range from 150 to 1500 cm2 [30,31,33,34,37,80]. In our study the average sur-
face area increases from 264 to 964 cm2 (Table 2). The computation of the cortical surface area
is highly dependent on the scale of measurement (this is commonly referred to as the coastline
paradox), which could, in addition to the above mentioned factors, explain the large range of
values in the literature. For cortical thickness, values between 1.2 to 1.4 mm were found by Xue
et al. [80]. In our study the average cortical thickness increased from 1.0 to 1.4 mm (Table 2).
For gyrification index, values between 1.1 and 2.2 were reported [31,40]. In our study the aver-
age gyrification index increased from 1.4 to 2.7 (Table 2), which is larger than found in the
mentioned studies. These studies also report a lower cortical surface area, which could suggest
that they are based on a smoother definition of the cortical surface, which directly influences
the gyrification index as well. For global mean curvature, values from 2 to 10 were reported
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[31,36], based on several definitions. In our study the average global mean curvature increased
from 2.3 to 4.2 (Table 2). Fourth, the number of patients in the severe abnormality class was
small. Therefore, statistical conclusions were drawn for patients in the combined moderate and
severe class. Finally, our work analysed longitudinally acquired images at fixed time points,
while other studies [31,33,36] focused on single images of patients acquired cross-sectionally at
different ages. Our study did not allow the analysis of the development over the full age range,
but the strength of this approach was that it did allow us to evaluate the (regional) change of
the quantitative descriptors within a patient.

Conclusion
The presented study, automatically quantifying cortical development, provides insight in
regional and longitudinal development based on T2-weighted MR brain images of preterm
infants with and without brain injury, longitudinally acquired at 30 and 40 weeks PMA. The
evaluated descriptors showed a larger change in the occipital lobes than in the other lobes.
Interestingly, increased cortical thickness and decreased cortical folding were found in infants
with brain injury scored according to a conventional abnormality scoring system. This was
more pronounced at 40 weeks PMA than at 30 weeks PMA, suggesting that the cortical matu-
ration processes during these 10 weeks might be affected by brain injury or other consequences
of preterm birth. This might offer a window of opportunity for neuroprotective intervention.
The potential of these findings to predict long-term cognitive outcome and the effect of specific
clinical risk factors should be evaluated in further studies.
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