59 research outputs found

    Quantitative Proteomic (iTRAQ) Analysis of 1st Trimester Maternal Plasma Samples in Pregnancies at Risk for Preeclampsia

    Get PDF
    A current major obstacle is that no reliable screening markers exist to detect pregnancies at risk for preeclampsia. Quantitative proteomic analysis employing isobaric labelling (iTRAQ) has been suggested to be suitable for the detection of potential plasma biomarkers, a feature we recently verified in analysis of pregnancies with Down syndrome foetuses. We have now examined whether this approach could yield biomarkers to screen pregnancies at risk for preeclampsia. In our study, we used maternal plasma samples obtained at 12 weeks of gestation, six from women who subsequently developed preeclampsia and six with uncomplicated deliveries. In our analysis, we observed elevations in 10 proteins out of 64 proteins in the preeclampsia study group when compared to the healthy control group. These proteins included clusterin, fibrinogen, fibronectin, and angiotensinogen, increased levels of which are known to be associated with preeclampsia. An elevation in the immune-modulatory molecule, galectin 3 binding protein, was also noted. Our pilot study, therefore, indicates that quantitative proteomic iTRAQ analysis could be a useful tool for the detection of new preeclampsia screening markers

    The Rapamycin-sensitive Phosphoproteome Reveals That TOR Controls Protein Kinase A Toward Some But Not All Substrates

    Get PDF
    In yeast TOR and PKA pathways both control cell growth but how TORC1 and PKA signaling are linked is unknown. Here we show that TORC1 inhibition prevents the phosphorylation of some but not all PKA targets. We further demonstrate that TORC1 controls PKA by inhibiting the phosphorylation of the PKA regulatory subunit BCY1 by the MAP kinase MPK1

    Quantitative Proteomics Analysis of Maternal Plasma in Down Syndrome Pregnancies Using Isobaric Tagging Reagent (iTRAQ)

    Get PDF
    Currently no specific biomarkers exist for the screening of pregnancies at risk for down syndrome (DS). Since a quantitative proteomic approach with isobaric labelling (iTRAQ) has recently been suggested to be highly suitable for the discovery of novel plasma biomarkers, we have now used this method to examine for potential quantitative changes in the plasma proteome of the pregnancies bearing DS fetuses in comparison to normal healthy babies. In our study, we used plasma from six women with DS pregnancies and six with uncomplicated pregnancies care were taken to match cases and controls for gestational and maternal age, as these could be a confounder. In our quantitative proteomics analysis we were able to detect 178 proteins using iTRAQ labelling in conjunction with 4800 MALDI TOF/TOF. Amongst these we observed changes in βHCG, a known screening marker for DS, indicating that our assay was functional. We found a number of elevated proteins Ig lambda chain C region, serum amyloid P-component, amyloid beta A4, and under expressed proteins like gamma-actin and titin in DS pregnancies. These proteins are also found in the sera of patients with Alzheimer disease, which share similar pathologies of DS. Our study therefore indicates that the iTRAQ labelling approach may be indeed useful for the detection of novel biomarkers

    Implications of the E-selectin S128R mutation for drug discovery

    Get PDF
    The C-type lectin E-selectin mediates the rolling of circulating leukocytes on vascular endothelial cells during the inflammatory process. In numerous studies, the S128R mutation of the E-selectin was associated with cardiovascular and autoimmune diseases. There is evidence that the S128R E-selectin mutation leads to a loss in ligand specificity, thus increasing leukocyte recruitment. Apart from the natural tetrasaccharide ligand sialyl Lewisx (sLex), it has previously been proposed that non-fucosylated carbohydrates also bind to S128R E-selectin. To evaluate the therapeutic potential of the antagonism of the E-selectin mutant, ligand specificity was reinvestigated on a molecular basis. We determined the ligand specificity of wild-type and S128R E-selectin in a target-based competitive assay, a glycan array screen and cell-based binding assays under static and flow conditions. Regarding ligand-specificity, the binding properties of S128R E-selectin were identical to those of wt E-selectin, i.e., no mutant-specific binding of 3′-sialyl-N-acetyllactosamine, heparin, fetuin and K562 cells was observed. Additionally, the binding affinities of glycomimetic E-selectin antagonists were identical for wt and S128R E-selectin. Overall, the previous reports on carbohydrate ligand promiscuity of S128R E-selectin could not be confirme

    Integrated Epigenetics of Human Breast Cancer: Synoptic Investigation of Targeted Genes, MicroRNAs and Proteins upon Demethylation Treatment

    Get PDF
    The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels

    mTORC2 Promotes Tumorigenesis via Lipid Synthesis

    Get PDF
    Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor devel- opment. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardi- olipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production

    Insulin resistance causes inflammation in adipose tissue

    Get PDF
    Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa
    corecore