1,075 research outputs found

    α spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegans

    Get PDF
    Acommon feature of multicellular animals is the ubiquitous presence of the spectrin cytoskeleton. Although discovered over 30 yr ago, the function of spectrin in nonerythrocytes has remained elusive. We have found that the spc-1 gene encodes the only α spectrin gene in the Caenorhabditis elegans genome. During embryogenesis, α spectrin localizes to the cell membrane in most if not all cells, starting at the first cell stage. Interestingly, this localization is dependent on β spectrin but not βHeavy spectrin. Furthermore, analysis of spc-1 mutants indicates that β spectrin requires α spectrin to be stably recruited to the cell membrane. Animals lacking functional α spectrin fail to complete embryonic elongation and die just after hatching. These mutant animals have defects in the organization of the hypodermal apical actin cytoskeleton that is required for elongation. In addition, we find that the process of elongation is required for the proper differentiation of the body wall muscle. Specifically, when compared with myofilaments in wild-type animals the myofilaments of the body wall muscle in mutant animals are abnormally oriented relative to the longitudinal axis of the embryo, and the body wall muscle cells do not undergo normal cell shape changes

    Physical and optical aerosol properties at the Dutch North Sea coast based on AERONET observations

    Get PDF
    International audienceSun photometer measurements at the AERONET station at the North Sea coast in The Hague (The Netherlands) provide a climatology of optical and physical aerosol properties for the area. Results are presented from the period January 2002 to July 2003. For the analysis and interpretation these data are coupled to chemical aerosol data from a nearby station of the Dutch National Air Quality Network. This network provides PM10 and black carbon concentrations. Meteorological conditions and air mass trajectories are also used. Due to the location close to the coast, the results are strongly dependent on wind direction, i.e. air mass trajectory. In general the aerosol optical properties are governed by industrial aerosol emitted form various industrial, agricultural and urban areas surrounding the site in almost all directions over land. For maritime air masses industrial aerosols are transported from over the North Sea, whereas very clean air is transported from the NW in clean polar air masses from the North Atlantic. In the winter the effect of the production of sea salt aerosol at high wind speeds is visible in the optical and physical aerosol data. In these cases fine and coarse mode radii are similar to those reported in the literature for marine aerosol. Relations are derived between the Ångström coefficients with both the fine/coarse mode fraction and the ratio of black carbon and PM10

    Physical and optical aerosol properties at the Dutch North Sea coast

    No full text
    International audienceSun photometer measurements at the AERONET station at the North Sea coast in The Hague (The Netherlands) provide a climatology of optical and physical aerosol properties for the area. Results are presented from the period January 2002 to July 2003. For the analysis and interpretation these data are coupled to chemical aerosol data from a nearby station of the Dutch National Air Quality Network. This network provides PM10 and black carbon concentrations. Meteorological conditions and air mass trajectories are also used. Due to the location close to the coast, the results are strongly dependent on wind direction, i.e.~air mass trajectory. In general the aerosol optical properties are governed by industrial aerosol emitted form various industrial, agricultural and urban areas surrounding the site in almost all directions over land. For maritime air masses industrial aerosols are transported from over the North Sea, whereas very clean air is transported from the NW in clean polar air masses from the North Atlantic. In the winter the effect of the production of sea salt aerosol at high wind speeds is visible in the optical and physical aerosol data. In these cases fine and coarse mode radii are similar to those reported in the literature for marine aerosol. Relations are derived between the Ångström coefficients with both the fine/coarse mode fraction and the ratio of black carbon and PM10

    Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle ofCaenorhabditis elegans

    Get PDF
    AbstractPerlecan, a component of the extracellular matrix (ECM), is essential for myofilament formation and muscle attachment inCaenorhabditis elegans.We show here that perlecan is a product of muscle and that it behaves in a cell autonomous fashion. That is, perlecan expressed in an individual muscle cell does not spread beyond the borders of the ECM underlying that cell. Using a polyclonal antibody that recognizes all isoforms of perlecan, we demonstrate that this protein first appears extracellularly at the comma stage (approx. 350 min) of development. We also show that during morphogenesis muscle cells have a heretofore undescribed plasticity of shape. This ability to regulate cell shape allows cells within a muscle quadrant to compensate for missing cells and to form a functional quadrant. A dramatic example of this morphological flexibility can be observed in animals in which the D blastomere has been removed by laser ablation. Such animals, lacking 20 of the 81 embryonic body wall muscle cells, can survive to become viable adult animals indistinguishable from wildtype animals. This demonstrates that the assembly of an embryo via a stereotypic lineage does not preclude a more general regulation during morphogenesis. It appears that embryos are flexible enough to immediately compensate for drastic alterations in tissue composition, a feature of development that may be of general importance during evolution

    Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle ofCaenorhabditis elegans

    Get PDF
    AbstractPerlecan, a component of the extracellular matrix (ECM), is essential for myofilament formation and muscle attachment inCaenorhabditis elegans.We show here that perlecan is a product of muscle and that it behaves in a cell autonomous fashion. That is, perlecan expressed in an individual muscle cell does not spread beyond the borders of the ECM underlying that cell. Using a polyclonal antibody that recognizes all isoforms of perlecan, we demonstrate that this protein first appears extracellularly at the comma stage (approx. 350 min) of development. We also show that during morphogenesis muscle cells have a heretofore undescribed plasticity of shape. This ability to regulate cell shape allows cells within a muscle quadrant to compensate for missing cells and to form a functional quadrant. A dramatic example of this morphological flexibility can be observed in animals in which the D blastomere has been removed by laser ablation. Such animals, lacking 20 of the 81 embryonic body wall muscle cells, can survive to become viable adult animals indistinguishable from wildtype animals. This demonstrates that the assembly of an embryo via a stereotypic lineage does not preclude a more general regulation during morphogenesis. It appears that embryos are flexible enough to immediately compensate for drastic alterations in tissue composition, a feature of development that may be of general importance during evolution

    Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C. elegans

    Get PDF
    SummarySensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan UNC-52/Perlecan linked the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis, and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites

    A simple method to alter the binding specificity of DNA-coated colloids that crystallize

    Get PDF
    DNA-coated colloids can crystallize into a multitude of lattices, ranging from face-centered cubic to diamond, opening avenues to producing structures with useful photonic properties. The potential design space of DNA-coated colloids is large, but its exploration is hampered by a reliance on chemically modified DNA that is slow and expensive to commercially synthesize. Here we introduce a method to controllably tailor the sequences of DNA-coated particles by covalently appending new sequence domains onto the DNA grafted to colloidal particles. The tailored particles crystallize as readily and at the same temperature as those produced via direct chemical synthesis, making them suitable for self-assembly. Moreover, we show that particles coated with a single sequence can be converted into a variety of building blocks with differing specificities by appending different DNA sequences to them. This method will make it practical to identify optimal and complex particle sequence designs and paves the way to programming the assembly kinetics of DNA-coated colloids.</p
    • …
    corecore