7 research outputs found

    Reactivity of Cobalt-Fullerene Complexes towards Deuterium

    Get PDF
    The adsorption of molecular deuterium (D2) onto charged cobalt-fullerene-complexes ConC60 + (n=1–8) is measured experimentally in a few-collision reaction cell. The reactivity is strongly size-dependent, hinting at clustering of the transition metal atoms on the fullerenes. Formation and desorption rate constants are obtained from the pressure-dependent deuterogenation curves. DFT calculations indeed find that this transition metal clustering is energetically more favorable than decorating the fullerene. For n=1, D2 is predicted to bind molecularly and for n=2 dissociative and molecular configurations are quasi-isoenergetic. For n=3–8, dissociation of D2 is thermodynamically preferred. However, reaching the ground state configuration with dissociated deuterium on the timescale of the experiment may be hindered by dissociation barriers.Fil: Vanbuel, Jan. Katholikie Universiteit Leuven; BélgicaFil: German, Estefania. Universidad de Valladolid; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Libeert, Guillaume. Katholikie Universiteit Leuven; BélgicaFil: Veys, Koen. Katholikie Universiteit Leuven; BélgicaFil: Moens, Janni. Katholikie Universiteit Leuven; BélgicaFil: Alonso, Julio A.. Donostia International Physics Center; España. Universidad de Valladolid; EspañaFil: López, María J.. Universidad de Valladolid; EspañaFil: Janssens, Ewald. Katholikie Universiteit Leuven; Bélgic

    Reactivity of Cobalt-Fullerene Complexes towards Deuterium

    No full text
    The adsorption of molecular deuterium (D2 ) onto charged cobalt-fullerene-complexes Con C60+ (n=1-8) is measured experimentally in a few-collision reaction cell. The reactivity is strongly size-dependent, hinting at clustering of the transition metal atoms on the fullerenes. Formation and desorption rate constants are obtained from the pressure-dependent deuterogenation curves. DFT calculations indeed find that this transition metal clustering is energetically more favorable than decorating the fullerene. For n=1, D2 is predicted to bind molecularly and for n=2 dissociative and molecular configurations are quasi-isoenergetic. For n=3-8, dissociation of D2 is thermodynamically preferred. However, reaching the ground state configuration with dissociated deuterium on the timescale of the experiment may be hindered by dissociation barriers.status: publishe

    Magnesium-Vacancy Optical Centers in Diamond

    No full text
    We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30–100 keV Mg+ ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive 27Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5–300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications

    Observation of the radiative decay of the 229Th^{229}Th nuclear clock isomer

    No full text
    The radionuclide thorium-229 features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. It constitutes one of the leading candidates for use in next-generation optical clocks13^{1–3}. This nuclear clock will be a unique tool for precise tests of fundamental physics49^{4–9}. Whereas indirect experimental evidence for the existence of such an extraordinary nuclear state is substantially older10^{10}, the proof of existence has been delivered only recently by observing the isomer’s electron conversion decay11^{11}. The isomer’s excitation energy, nuclear spin and electromagnetic moments, the electron conversion lifetime and a refined energy of the isomer have been measured1216^{12–16}. In spite of recent progress, the isomer’s radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. Here, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229m^{229m}Th). By performing vacuum-ultraviolet spectroscopy of 229m^{229m}Th incorporated into large-bandgap CaF2_{2} and MgF2_{2} crystals at the ISOLDE facility at CERN, photons of 8.338(24) eV are measured, in agreement with recent measurements1416^{14–16} and the uncertainty is decreased by a factor of seven. The half-life of 229m^{229m}Th embedded in MgF2_{2} is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.The nucleus of the radioisotope thorium-229 (229{}^{229}Th) features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. For this reason, it is a leading candidate for use in next-generation optical clocks. This nuclear clock will be a unique tool, amongst others, for tests of fundamental physics. While first indirect experimental evidence for the existence of such an extraordinary nuclear state is significantly older, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay and its hyperfine structure in a laser spectroscopy study, revealing information on the isomer's excitation energy, nuclear spin and electromagnetic moments. Further studies reported the electron conversion lifetime and refined the isomer's energy. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. In this Letter, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (229m{}^{229\mathrm{m}}Th). By performing vacuum-ultraviolet spectroscopy of 229m{}^{229\mathrm{m}}Th incorporated into large-bandgap CaF2{}_2 and MgF2{}_2 crystals at the ISOLDE facility at CERN, the photon vacuum wavelength of the isomer's decay is measured as 148.71(42) nm, corresponding to an excitation energy of 8.338(24) eV. This value is in agreement with recent measurements, and decreases the uncertainty by a factor of seven. The half-life of 229m{}^{229\mathrm{m}}Th embedded in MgF2{}_2 is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus
    corecore