7 research outputs found

    Use of an integrative soil health test for evaluation of soil management impacts

    Get PDF
    Understanding the response of soil quality indicators to changes in management practices is essential for sustainable land management. Soil quality indicators were measured for 2 years under established experiments with varying management histories and durations at four locations in New York State. The Willsboro (clay loam) and Aurora (silt loam) experiments were established in 1992, comparing no-till (NT) to plow-till (PT) management under corn (Zea mays L.)-soybean (Glycine max L.) rotation. The Chazy (silt loam) trial was established in 1973 as a factorial experiment comparing NT versus PT and the crop harvesting method (corn silage versus corn grain). The Geneva (silt loam) experiment was established in 2003 with vegetable rotations with and without intervening soil building crops, each under three tillage methods (NT, PT and zone-till (ZT)) and three cover cropping systems (none, rye and vetch). Physical indicators measured were wet aggregate stability (WAS), available water capacity (AWC) and surface hardness (SH) and subsurface hardness (SSH). Soil biological indicators included organic matter (OM), active carbon (AC), potentially mineralizable nitrogen (PMN) and root disease potential (RDP). Chemical indicators included pH, P, K, Mg, Fe, Mn and Zn. Results from the Willsboro and Aurora sites showed significant tillage effects for several indicators including WAS, AWC, OM, AC, pH, P, K, Mg, Fe and Mn. Generally, the NT treatment had better indicator values than the PT treatments. At the Chazy site, WAS, AWC, OM, AC, pH, K and Mg showed significant differences for tillage and/or harvest method, also with NT showing better indicator values compared to PT and corn grain better than corn silage. Aggregate stability was on average 2.5 times higher in NT compared to PT treatments at Willsboro, Aurora and Chazy sites. OM was also 1.2, 1.1 and 1.5 times higher in NT compared to PT treatments at Willsboro, Aurora and Chazy sites, respectively. At the Geneva site WAS, SH, AC, PMN, pH, P, K and Zn showed significant tillage effects. The cover crop effect was only significant for SH and PMN measurements. Indicators that gave consistent performance across locations included WAS, OM and AC, while PMN and RDP were site and management dependent. The composite soil health index (CSHI) significantly differentiated between contrasting management practices. The CSHI for the Willsboro site was 71% for NT and 59% for PT, while at the Aurora site it was 61% for NT and 48% for PT after 15 years of tillage treatment

    Conservation Agriculture Practices Increase Potentially Mineralizable Nitrogen: A Meta-Analysis

    Get PDF
    Potentially mineralizable nitrogen (PMN) is considered an important indicator of soil health. Cropping systems management can affect PMN. However, the effect size and relationship with crop yield across specific management practices remain uncertain. We conducted a quantitative review to understand how conservation agriculture management practices affect PMN including N fertilizer application, cropping system diversity, and tillage system as well as the relationship of crop yield with PMN. Data were extracted from 43 studies published in peer-reviewed journals, providing 494 paired comparisons of PMN and 26 paired comparisons of PMN and yield across selected crop management practices. In our meta-analysis, the effect size for each management practice was expressed as a response ratio, calculated as PMN or yield for the fertilizer application, high crop diversity, and no-till system to the no-fertilizer, less diverse crop system, and tillage system. On average, N-fertilized cropping systems had greater PMN: compared to no N fertilizer, inorganic N fertilizer had 22%, and manure had 34% higher PMN. Diverse cropping systems also had greater PMN: three or more different crops in rotation had 44% greater PMN than continuous cropping systems; cropping systems with a leguminous cover crop had 211% greater PMN than systems without cover crops. Compared to till systems, no-till systems had 13% higher PMN. Overall, conservation practices consistently increased both PMN and yield; however, the increase in PMN and yield were not correlated. Consistent with the use of PMN as a soil health indicator, this synthesis demonstrates that practices benefiting PMN also benefit yield

    Forages for Conservation and Improved Soil Quality

    Get PDF
    Forages provide several soil benefits, including reduced soil erosion, reduced water runoff, improved soil physical properties, increased soil carbon, increased soil biologic activity, reduced soil salinity, and improved land stabilization and restoration when grown continuously or as part of a crop rotation. Ongoing research and synthesis of knowledge have improved our understanding of how forages alter and protect soil resources, thus providing producers, policymakers, and the general public information regarding which forage crops are best suited for a specific area or use (e.g. hay, grazing or bioenergy feedstock). Forages can be produced in forestland, range, pasture, and cropland settings. These land use types comprise 86% of non-Federal United States rural lands (Table 12.1). In the United States, active forage production occurs on 22.6 million ha and is used for hay, haylage, grass silage, and greenchop (Table 12.2). Forages are used as cover crops in several production systems, and approximately 4.2 million ha were recently planted in cover crops (Table 12.3). Currently, the highest cover crop use rates, as a percentage of total cropland within a given state, occur in the northeastern United States. Globally, permanent meadows and pastures account for over 3.3 billion ha, greater than arable land and permanent crops combined (Table 12.4). Within all regions of the world, except Europe, permanent meadows and pastures are a greater proportion of land cover than permanent crops. Pasture management information and resources are available for countries around the world (FAO 2017a,b). As seen in Tables 12.1–12.4, forages are used globally and can provide soil benefits across varied soil and climate types
    corecore