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Forages for Conservation and Improved

Soil Quality

John F. Obrycki, ORISE Fellow, USDA-National Laboratory for Agriculture and the

Environment, Ames, 1A, USA

Douglas L. Karlen, Soil Scientist (Retired), USDA-National Laboratory for Agriculture

and the Environment, Ames, IA, USA

Overview

Forages provide several soil benefits, including reduced
soil erosion, reduced water runoff, improved soil physi-
cal properties, increased soil carbon, increased soil biologic
activity, reduced soil salinity, and improved land stabi-
lization and restoration when grown continuously or as
part of a crop rotation. Ongoing research and synthesis
of knowledge have improved our understanding of how
forages alter and protect soil resources, thus providing pro-
ducers, policymakers, and the general public information
regarding which forage crops are best suited for a specific
area or use (e.g. hay, grazing or bioenergy feedstock).
Forages can be produced in forestland, range, pasture,
and cropland settings. These land use types comprise 86%
of non-Federal United States rural lands (Table 12.1).
In the United States, active forage production occurs
on 22.6 million ha and is used for hay, haylage, grass
silage, and greenchop (Table 12.2). Forages are used as

USDA is an equal opportunity provider and employer. This
research was supported, in part, by an appointment to the Agri-
cultural Research Service (ARS) Research Participation Program
administered by the Oak Ridge Institute for Science and Educa-
tion (ORISE).

cover crops in several production systems, and approxi-
mately 4.2 million ha were recently planted in cover crops
(Table 12.3). Currently, the highest cover crop use rates,
as a percentage of total cropland within a given state,
occur in the northeastern United States.

Globally, permanent meadows and pastures account
for over 3.3billionha, greater than arable land and
permanent crops combined (Table 12.4). Within all
regions of the world, except Europe, permanent meadows
and pastures are a greater proportion of land cover than
permanent crops. Pasture management information and
resources are available for countries around the world
(FAO 2017a,b). As seen in Tables 12.1-12.4, forages are
used globally and can provide soil benefits across varied
soil and climate types.

Forages Reduce Water and Wind Erosion

Forages as part of a comprehensive soil management
plan can reduce erosion, particularly, if living plants are
maintained on the landscape during most of the year.
Compared to agricultural fields with limited residue cover,
permanent ground cover reduces soil loss (Figure 12.1).
Research during the 1930s and early 1940s across several
research sites in the United States showed that row crops

Forages: The Science of Grassland Agriculture, Volume II, Seventh Edition.
Edited by Kenneth J. Moore, Michael Collins, C. Jerry Nelson and Daren D. Redfearn.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Part II Forage Ecology

Table 121 Land cover in non-federal rural land (2012)

Cover type Hectares (000s)
Forest 167 300
Range 164 300
Crop 146 900
Other rural land 49 040
Conservation reserve 18400
Total rural land 555700

Source: Adapted from USDA National Resources Inventory Sum-

mary Report, August 2015, Table 2.

Table 122 Number of farms, hectares, and megagrams used for hay,
haylage, grass silage, and greenchop in the United States and sorted
by states with greatest number of hectares (2012)

Location Number of farms Hectares Dry Mg

United States 813583 22581037 115501930
Texas 86456 2052461 8656202
Missouri 50279 1356011 4781446
Oklahoma 32781 1095202 3411413
South Dakota 14695 1058781 3305505
Nebraska 20034 1007009 4289189
Kansas 25710 999 594 3932886
Wisconsin 37020 970300 6547 600
Montana 11728 917 894 3609 240
North Carolina 10 141 879651 2847363
Kentucky 43757 826784 3771345
New York 19182 749 385 4007071

Source: Adapted from USDA (2012) Census of Agriculture, Table 26.

had between 98- and 1277-times as much soil loss as
permanent cover (Figure 12.2). Please note that the data
highlighted in Figure 12.2 were originally summarized by
Browning (1951).

With increased adoption of conservation practices
reducing tillage frequency and intensity, combined with
increasing surface residue cover, the average erosion from
agricultural land decreased (Figure 12.3). Current esti-
mates for sheet and rill erosion from cultivated cropland
are approximately 6.7 Mgha™ yr!, 1.6Mgha™! yr™!
from pastureland, and 0.9 Mgha™' yr~'from conser-
vation reserve land. Erosion is seven-fold higher in
cultivated cropland compared to conservation reserve
land. Wind erosion removes 4.9 Mgsoil ha™! yr~'from
cultivated cropland, 0.4 Mgha™' yr™' from pastureland,
and 2.0 Mgha™' yr'from conservation reserve land
(USDA 2015). The long-term trends in wind erosion are
similar to the sheet and rill erosion data (Figure 12.3).

This reduction in erosion documents a significant
improvement compared to the erosion rates seen in

Figure 12.2. Figure 12.1 shows that erosion potential is
a constant issue that must be addressed. Furthermore,
even though average erosion rates are useful for general
comparisons, generalized interpretation of these data has
been long-recognized to mask variable landscape-level
erosion rates (Bennett and Chapline 1928).

Similar trends in sediment reductions occur when
forages are incorporated into row crops as conservation
buffers (Figure 12.4) (Helmers et al. 2012) or when
forages, rotational grazing, and conservation buffer
strips are combined (Pilon et al. 2017). Within a no-till
corn — soybean rotation, various prairie filter strip con-
figurations reduced sediment loss by over 90%. These
reductions were achieved by taking either 10% or 20%
of the watershed area out of crop production and placing
it in conservation buffers (Helmers et al. 2012).

The prairie filter strips reduced visible ephemeral
gully formation. Data from 2008-2010 are presented in
Figure 12.4. All treatments in 2007 (the first year of the
study), had sediment loss below 0.1 Mgha™'. The study



Chapter 12 Forages for Conservation and Improved Soil Quality

228

Table 123 Cover crop use in the United States by farm type, state, and
proportion of cropland hectares (2012)

Cropland planted to a cover crop (excluding CRP) Hectares
United States 4162264
By North American Industry Classification System
Oilseed and grain farming 1800 024
Sugarcane farming, hay farming, and all other crop farming 543201
Dairy cattle and milk production 408593
Beef cattle and ranching 376017
Vegetable and melon farming 264363
Cotton farming 312372
Fruit and tree nut farming 161615
By State
Texas 368851
Indiana 241321
Wisconsin 223889
Pennsylvania 180686
Michigan 177 004
By Proportion of Cropland Hectares Percent
United States 3
Maryland 23
Delaware 16
Connecticut 14
Rhode Island 11
New Jersey 11

Source: Adapted from USDA (2012) Census of Agriculture, Tables 8, 50 (national

and individual states), and 68.

Table 124 Worldwide land cover data for arable land, permanent crops,
and permanent meadows and pastures

Permanent meadows

Arable land Permanent crops and pastures
Location Hectares (000s)
Worldwide 1399212 152098 3362738
Africa 219624 31317 885058
Americas 366435 28287 817561
Asia 486772 75166 1090456
Europe 278516 15834 178996
Oceania 47 865 1494 390 668

Source: From FAOSTAT, composition of global agricultural area, 2000-2014 aver-

age, item codes 6621, 6650, 6655.

area was previously planted to smooth bromegrass for
at least ten years. Planted species in the buffer included
more than 20 species. Indiangrass, little bluestem, and big
bluestem were the predominate species (Helmers et al.
2012). Incorporating forages into a cropland landscape
can provide large sediment reductions relative to the total
area used by the forages.

Forages Improve Soil Properties

At a regional scale, soil C and soil aggregate stability are
generally higher in non-cultivated soils than in cultivated
soils, as documented for western (Kemper and Koch
1966), central plains (Haas et al. 1957), and southern US
(McCracken 1959) areas. These comparisons included
important data regarding fields that had been cultivated
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Fic. 12.1.

Forages can be effective as surface mulches to reduce runoff and erosion. Top photo: For-

ages: The Science of Grassland Agriculture (Browning 1951). Bottom photo: Recent soil erosion in lowa
(lowa NRCS, undated). Source: Figure name adapted from caption used by Browning (1951).

and fields that had never been in production. More recent
data, indicates how actively managed forages can help
improve numerous soil properties as discussed below.
Forages can have positive effects on soil properties even
on fields that remain in cultivation. Forages may help
reduce site-specific variation in soil properties and pro-
cesses caused by soil mismanagement, such as can occur
from ephemeral gullies.

Soil Carbon

Increased soil C in fields planted to forages relative to
other agricultural land uses was documented in a survey
of the southeastern United States (Causarano et al. 2008).
Within the 0 to 20-cm layer, soil organic C was highest
in pasture (39 Mgha™"), followed by conservation tillage
(28 Mgha™), and conventional tillage (22Mgha™)
fields (Causarano et al. 2008). The differences among
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Fiz. 12.2. Precipitation runoff (a) and soil loss (b

) data between row crop and sod across sites col-

lected during the 1930s and 1940s in the United States. Source: Browning (1951).

these soil management systems was largest within the 0 to
5-cm layer which had average soil organic C concentra-
tions of 25, 15, and 7.5 gkg’1 for pasture, conservation
tillage, and conventional tillage, respectively (Causarano
et al. 2008). The study did not find an interaction in soil
C effects with major land resource areas.

Similar results were reported from long-term field plots
in Missouri (Veum et al. 2014). Long-term timothy pas-
ture without manure fertilizer had approximately two-fold
more soil organic C than soil in a moldboard-plowed
continuous corn system (Table 12.5) (Veum et al. 2014).

Other treatments such as reducing tillage and adding
manure also increased soil C (Table 12.5). Several studies
have confirmed that incorporating forages into a rotation
is an effective long-term method for increasing soil C
(Chan et al. 2011).

If fields in long-term forage are then cultivated,
some C loss will occur (Grandy and Robertson 2007;
Reicosky et al. 1995). For example, one tillage activ-
ity using inversion plowing to a 20-cm depth in a
dairy-based perennial grassland farming system resulted
in a 32MgCha™" loss (—22%) in soils collected from
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Fiz. 12.3. Sheetandrill erosion from cropland, conservation reserve program (CRP) land, and pas-
ture land in the United States. Source: USDA (2015), National Resources Inventory Report.

Table 125 Soil organic C analyzed from long-term Sanborn Field (Boone
County, Missouri, US) plots evaluated in 2008

Year Soil organic

Crop Tillage Fertilizer established C (gkg™)
Timothy None Manure 1888 27.4

Corn No-till Annual N,PK 1950 22.3
Timothy None None 1888 22.2
Wheat Moldboard plow Manure 1888 19.9

Corn Moldboard plow Manure 1888 17.0
Wheat Moldboard plow Annual N,BK 1888 15.1

Corn Moldboard plow Annual N,BK 1950 13.3
Wheat Moldboard plow None 1888 10.3

Corn Moldboard plow None 1888 9.4

Source: From Veum et al. (2014).

the 0 to 30-cm depth increment (Necpdlovd et al. 2013).
This difference remained consistent for 2.5 years after
the single tillage event and reseeding to forage. These
C losses can be reduced if different tillage practices are
used. Soils converted from long-term grass alfalfa to malt
barley using a 10-cm rototill treatment had a 1.6-fold
higher soil surface CO, flux average compared to soils
remaining in grass-alfalfa. No difference in soil CO, flux
occurred between malt barley converted using no-till and
long-term grass-alfalfa (Jabro et al. 2008).

Variations in soil C under pasture can occur by soil
type, as was documented in New Zealand (Schipper
et al. 2014) and Canada (Wang et al. 2014). Pasture soil
profiles that had been previously surveyed were resampled
throughout New Zealand (Figure 12.5). Soil C decreases
in 0 to 30-cm soil samples were found in Allophanic and
Gley soils, with reductions of approximately 1.4 kg C m™2
and 0.8kgCm™2, respectively (Schipper et al. 2014).
These C decreases could have occurred due to increased
artificial drainage on the inherently poorly-drained Gley
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Fiz. 12.4. Prairie filter strips effect on reducing sediment loss from no-till corn-soybean fields in

lowa (Helmers et al. 2012).

soils and higher than anticipated soil C degradation in
Allophanic soils (Schipper et al. 2014). Soil C differences
were not seen in soils under forages used for either dairy
or drystock production. Increases in soil C occurred more
frequently on sloped fields, compared to flat fields, due
to reduced erosion on the sloped fields (Schipper et al.
2014).

Grazing intensity can also affect soil C concentra-
tions. In the southeastern United States, surface soils
(0 to 15cm) frequently trafficked by grazers contained
1.3-fold more soil C than soil under non-harvested
forages. The frequently trafficked areas also had 1.6-fold
more soil C than hayed forages (Franzluebbers and
Stuedemann 2009). This trend was reversed in southern
Brazil. Compared to an area grazed to a sward height of
10 cm, a nongrazed area had 1.1-fold higher soil carbon
stocks at a depth of 30 cm (Carvalho et al. 2010b). At
other research sites in the southeastern US, lower grazing
intensity increased particulate organic carbon fractions
1.2-fold compared with higher grazing intensities as a
greater amount of plant matter remained in the field (Sil-
veira et al. 2013). The root mass available to potentially
contribute to soil C can be increased by grazing (Russell
and Bisinger 2015) or by maintaining different forages
with a variety of rooting depths (McNally et al. 2015).

Surface soil C, such as collected from 0 to 15 cm, tends
to increase under permanent forage compared to other

cropping systems. Holding other landscape variables
constant, these soil C differences between forage and
continuous field crop systems is largest when comparing
two treatments with a larger range in soil disruption,
such as was seen in Table 12.5 for soils collected from 0
to 10 cm. Site-specific factors can change the magnitude
of the soil C benefit from forages. For example, soil C
changes in integrated crop-livestock systems in Brazil
depended on several factors including crops grown,
climatic conditions, condition of land transitioned, and
amount of time in the management system (Carvalho
et al. 2010a; Salton et al. 2014).

Soil Aggregation

Soil aggregation increases under permanent forage when
compared to forage in a cropping rotation or continu-
ous crop production system (Figure 12.6) (Harris et al.
1966). The soil aggregates formed under forages tend
to be larger in size, such as greater than 1 or 2mm in
diameter (Jokela et al. 2011, Angers 1992, Wilson et al.
1948). These larger aggregates are also important sites
for increasing soil C (Grandy and Robertson 2007).
Seasonal variability in soil aggregation occurs (Bach and
Hofmockel 2016; Rasiah and Kay 1994; Perfect et al.
1990). Soil aggregate sizes are reduced when a soil under
permanent forage is converted to continuous crop pro-
duction (van Bavel and Schaller 1951). The difference in
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Fiz. 12.5. Changes in soil C by soil order for
long-term forage systems in New Zealand for 0 to
30-cm samples (Schipper et al. 2014). Figure
generated using supplemental data provided in
article. Sample size from left to right: 32, 27, 25,
32,15, 19.

soil aggregate sizes between cultivated and non-cultivated
soils can depend on the method used to evaluate soil
aggregates. Differences are most pronounced in a test
simulating slaking (Elliott 1986).

Across the United States, a 2014 survey of rangeland
soils documented a range of aggregate stabilities when
evaluated using an in-field soil aggregate stability slake
test (Figure 12.7) (USDA NRCS 2014). Soils with a
rating of 4 or less were unstable in water. Figure 12.7
shows aggregate stability for rangeland soils plotted by
the number of rangeland acres reported in the 2012
National Resources Inventory (USDA 2015). Soils in
Arizona, Nevada, and New Mexico were the least stable.
These three states also had the highest percentages of
bare ground, with approximately 38%, 29%, and 26%,
respectively (USDA NRCS 2014). Rangeland practices
that promote forage cover and reduce bare ground, such
as avoiding overgrazing, may help reduce the erosion
potential of these soils.

Part II Forage Ecology

Forage species can impact soil aggregation. Changes
in soil wetting and drying conditions caused by smooth
bromegrass growth reduced soil aggregate stability com-
pared with a control soil without bromegrass (Caron et al.
1992). Forage species with greater root mass can increase
soil aggregation (>0.5 mm, <2.0 mm) (Stone and Buttery
1989). In an 80-day laboratory experiment using Brook-
ston clay loam soil, soil wet aggregate stability ranged
from 34 to 45% across nine forage species. Higher wet
aggregate stability occurred in reed canarygrass (45%) and
produced 17.8 g of root dry weight (Stone and Buttery
1988). Water stable aggregates (>0.25 mm) in an 84-day
experiment using coastal plain Georgia soils tended to
be similar to control soils under field pH conditions for
warm- and cool-season plants (Karki and Goodman
2011).

Water Infiltration

Forages increase water infiltration into the soil by increas-
ing the amount of roots in the soil and providing canopy
interception for rainfall (Angers and Caron 1998; Meek
et al. 1989 1992, Miller et al. 1963). The magnitude of
these changes can be affected by several factors, including
soil type, number of years following management changes,
and yearly management activities.

Following four growing seasons of alfalfa, water infil-
tration rate was higher in no traffic and minimal traffic
areas compared to alfalfa areas that received more fre-
quent traffic (Meek et al. 1989). Compared to baseline
conditions, increases in infiltration rates were 2.6-fold
for no traffic, 2.2-fold for preplant traffic, 1.6-fold for
traffic reflecting current grower practices, and 1.2-fold for
repeated traffic activities (Meek et al. 1989). In orchard
soils, cumulative infiltration was reduced by approx-
imately one-half between traveled and non-traveled
areas, and larger infiltration rates occurred in soils with
cover crops than in those without (Miller et al. 1963).
Site-specific preferential flow can also affect infiltration
under forages (Harman et al. 2011).

Conversely, cover crops grown as part of a corn-soybean
rotation did not have consistent water infiltration after
three years (Kaspar et al. 2001). Instead, wheel traffic
affected infiltration to a greater extent than the presence
of oat or rye. Averaged across all three years, areas without
traffic allowed 1.85-fold higher infiltration than tracked
areas (20.3gm™2 s7' vs. 10.9gm™2 s7!) (Kaspar et al.
2001). The potential soil structural benefits from growing
cover crops for one year may be masked by the machinery
traffic required to manage the cover crops (Riicknagel
etal. 2016).

Animal hoof action is another form of site traffic that
can compact soils and reduce water infiltration rates
(Russell and Bisinger 2015; Cuttle 2008). Bare soils are
prone to being compacted compared to soils with at least
10 cm sward height, and these compacted soils will have
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Fiz. 12.B. Aggregate stability data for several cropping systems collected from lowa (Browning
et al. 1948, Karlen et al. 2014), Indiana, Missouri, and Ohio (Karlen et al. 2014). Source: Data from Karlen

et al. (2014) for 0 to 5-cm samples.

lower water infiltration rates (Russell and Bisinger 2015).
Grazed soils with sward heights of 10 cm or greater did
not have greater phosphorus (P) loss or runoff volume
compared to nongrazed areas (Russell and Bisinger 2015).
Walking cattle can exert pressures on the soil potentially
three times higher than an unloaded tractor. The greatest
amounts of soil compaction occur close to the soil surface
due to the smaller surface area of hooves compared to
tractor tires. Depending on pasture size, length of grazing,
and pasture location, each unit of soil could be walked
on 10 times during a 140-day grazing season (Russell and
Bisinger 2015).

Soil Microbial and Biological Activity

Forages increase soil microbial activity and abundance.
Long-term pasture soils had higher values for several
soil microbial indicators, particularly for soils collected
from 0 to 2.5-cm depth (Haynes 1999). Compared to
long-term row-cropped land, long-term pasture had an
estimated two-fold higher organic C, 1.5-fold higher

microbial quotient, 1.7-fold higher metabolic quotient,

3.5-fold higher fluorescein diacetate (FDA) hydrolytic
activity, and five-fold higher acid phosphate activity
(Haynes 1999).

Similar microbial differences occurred between
long-term corn and pasture plots (Veum et al. 2014)
and between vegetable crops and pasture (Bandick and
Dick 1999). Timothy plots had 2.5-fold and 7.9-fold
higher dehydrogenase activity than wheat and corn plots,
respectively. Phenol oxidase activity under timothy was
2.7-fold higher than wheat and two-fold higher than corn
(Veum etal. 2014). Pasture soils (0 to 20-cm) had between
1.7- and 3.6-fold higher FDA hydrolysis compared to
vegetable crop rotations in western Oregon (Bandick
and Dick 1999). Permanent fescue had higher enzyme
activities than winter fallow plots in western Oregon
for f-galactosidase (1.3-fold higher), amidase (1.4-fold),
deaminase (1.04-fold), invertase (1.3-fold), and urease
(1.4-fold). At the same research location, cover crops
included in the vegetable rotation had similar enzyme

activities as the fescue plots (Bandick and Dick 1999).
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Forage species influence soil fauna differences.
Perennial ryegrass tended to support more herbivo-
rous invertebrates compared to chicory, red clover, and
white clover. These invertebrates included greater abun-
dances of herbivorous nematodes and certain Collembola
superfamilies. Higher abundances occurred in perennial
ryegrass fertilized with 200 kgNha™! yr™!
to ryegrass plots receiving 80 kg N ha™' yr~'. The other
three forages supported higher populations of decomposer

compared

invertebrates compared to perennial ryegrass (Crotty et al.
2015). White clover had between 1.7- and 2.2-fold higher
earthworm abundance compared to the other forages.
Total nematode populations were consistent across the
forages (Crotty et al. 2015).

Quantifying interactions among soil, forage roots,
soil enzymes, and soil organisms requires substantial
research to propetly evaluate direct and indirect effects
(Crotty et al. 2015). For example, soil pH can influence

soluble P cycling, as lower pH forage soils tend to have
lower activities of phosphodiesterase and higher labile
organic P concentrations (Turner and Haygarth 2005). In
lower pH soils, fungi tend to occur in greater abundance
than bacteria. Subtle linkages between soil microbial
activity and nutrient availability could affect forage soil
management. Additional opportunities exist for increased
understanding of and linking soil biology and plant
species to achieve disease-suppressive pasture systems
(Dignam et al. 2016).

Three years of forage growth followed by spring wheat
and winter barley growth indicated soil fungal community
effects could be detected during the cereal crop growth
(Detheridge et al. 2016). The anti-fungal isothiocyanates
released by forage radish during decomposition did not
reduce arbuscular mycorrhizal fungi colonization in maize
roots (White and Weil 2010). Compared to no cover crop,
cereal rye increased AMF colonization 12-16% in three
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of six site-years when measured at V4 corn growth stage,
with no cover crop effect found at V8 (White and Weil
2010).

Nutrient Cycling

Long-term crop rotations that include forages, such as
alfalfa, are well known as a method for maintaining and
increasing crop yields while reducing external N inputs
(Osterholz et al. 2017; Ross et al. 2008; Page and Willard
1947). Cover crops, such as forage radish and winter
pea may help cycle nitrogen (N) and P for subsequent
crops (White and Weil 2011; Jahanzad et al. 2016).
Cereal rye, a widely planted cover crop, might not cycle
agronomically important amounts of N for future crops,
but it often does reduce soil N loss (Jahanzad et al. 2016;
Pantoja et al. 2016).

Nitrification rates of forages vary by species and cul-
tivar (Bowatte et al. 2015). Forage species and cultivars
with a low rate of soil nitrification may help reduce soil N
losses, and in combination with high biomass production
could be useful management tools (Bowatte et al. 2015).
An analysis of 126 cultivars and 26 species used in tem-
perate grasslands indicated variation between and within
cultivars. These findings highlighted the potential use of
additional breeding selection for specific characteristics,
in addition to improving nitrification test methodology
(Bowatte et al. 2015).

Forage grazing introduces N, B and K to the soil
through animal waste, as approximately 70-90% of
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nutrients will be recycled by animals and not removed
from the field (Haynes and Williams 1993). Nutrient
loss from the soil may occur due to an imbalance in
plant uptake and an excess of animal supplied fertilizer.
Across sixteen grasses common to New Zealand, Moir
et al. (2012) reported a range of N leaching losses from
applied dairy cow urine. Perennial ryegrass, tall fescue,
and kentucky bluegrass had lower plant N uptake and
increased soil water N leaching (Moir et al. 2012). Pairing
perennial ryegrass with white clover in pasture systems,
along with nitrification inhibitors and fungal inoculation
may help reduce N loss from perennial ryegrass systems
and reduce the need for N fertilizer applications (Andrews
etal. 2011).

Combined Soil Health Effects of Forages

While soil physical, chemical, and biologic effects from
forages can be measured and interpreted separately, forage
systems can systematically change all of these properties
(Jokela et al. 2011) (Table 12.6). Seil quality or soil
health assessments measure multiple soil physical, chem-
ical, and biologic properties and aggregate these values to
create a system-level assessment of soil function. Several
different methods can be used for this process, including
the soil management assessment framework (SMAF)
(Andrews et al. 2004), the soil conditioning index (SCI)
(Zobeck et al. 2007), the comprehensive assessment of

soil health (CASH) (Moebius-Clune et al. 2016), and

Table 126 Soil physical, chemical, and biologic properties between pasture and other cropping

systems after 18 years from Arlington, WI

Other cropping
Pasture systems

Sampling depth (cm) Units 0-5 5-20 0-5 5-20
pH 6.20 6.50 6.66 6.63
P mgkg™! 49.8 36.0 54.8 42.1
K mgkg™! 163 75 173 90
Total organic C gkg™! 33.6" 22.4 24.5 21.7
Total N gkg™! 3.40° 2.10 2.36 2.14
Active C mgkg™! 23507 1380 1850 1640
Potentially mineralizable N mgkg™! 61.2° 24 .4 34.5 24.4
Total microbial biomass nmol kg™ 523 193 194 131
Bulk density kgcm™ 1.24 1.42 1.21 1.41
Water content kgkg™! 0.29° 0.23 0.27 0.26
Water stable aggregates (2—-8 mm) gkg™! 649 639 332 443
Water stable aggregates (0.25—-2 mm) gkg™! 240 234 439 4137

Source: Jokela et al. (2011).

“Noted statistical significance for difference between pasture and other cropping systems at a given depth. Symbol next

to higher value. See Jokela et al. (2011) for details.



238

several other tests including those offered by commercial
laboratories.

Generally, these assessment methods yield similar
results. High-functioning soils are indicated as such
across the methods used, though there can be variation
in the magnitude of differences found among calcu-
lation methods (Congreves et al. 2015; Karlen et al.
2017; Zobeck et al. 2008). Soil quality index calculation
methods for cropping systems in Brazil indicated soils
under pasture tended to have an intermediate level of
soil functioning below the highest functioning native
vegetation and the lowest functioning sugarcane produc-
tion. Several calculation methods also indicated pasture
and sugarcane production had similar functioning soils
(Cherubin et al. 2016). The difference in results occurred
depending on which soil properties were included in
a given index calculation and how values were added
together (Cherubin et al. 2016).

Forages in rotations with reduced tillage or in perma-
nent pasture tend to have higher soil quality index val-
ues compared to other systems (Karlen et al. 2014; Veum
et al. 2014, Zobeck et al. 2007). Perennial timothy plots
receiving manure applications had approximately 1.5-fold
higher SMAF scores than moldboard plow corn receiving
no fertilizers. Timothy plots without manure had 1.4-fold
higher SMAF scores than the same corn treatment (Veum
et al. 2014). Forage-based rotations throughout sites in
the Midwest US had 1.1-fold higher soil quality index
scores compared to continuous corn sites (Karlen et al.
2014).

Increased soil quality index values do not always occur,
however, especially if all comparison sites are inherently
highly productive (Jokela et al. 2011). For example, a
comprehensive evaluation of several cropping systems in
Wisconsin identified differences in soil physical, chemical,
and biologic properties. Pasture soils had larger >2 mm
water stable aggregates, higher C and N measurements,
and similar P and K soil concentrations. Other cropping
systems had higher water stable aggregates <2 mm, poten-
tially due to more frequent soil disruption that reduced
larger aggregate formation. The other cropping systems
tested included continuous corn, grain rotations, forage
systems, and a grass-legume pasture (Jokela et al. 2011).
Most of the differences found between pasture soils and
the other cropping systems occurred in the 0 to 5-cm
depth range, though the aggregate stability difference was

also seen at samples collected from 5 to 20-cm.

Saline Seeps

Forages are effective for controlling the soil chemical
management problem of saline seeps. Saline seeps occur
in areas where water flows through the soil accumulating
salts in the soil solution until it comes into contact with
some form of impermeable layer and gradually moves
back to the soil surface. This series of steps often occurs
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in downslope soil gradients. Then, as water evaporates
from the soil surface, excess salts are left behind in the soil
rooting zone (Halvorson and Richardson 2011; Miller
et al. 1981). These soils can be classified as saline soils if
the electrical conductivity is greater than 4dSm™!, but
soil electrical conductivity levels do not need to reach
4dSm™" for yields to be reduced (Steppuhn et al. 2005;
Maas and Grattan 1999).

Forages can help manage saline seeps by lowering the
water table through increased plant transpiration. One
well-known forage for managing saline seeps is alfalfa
because the species has a deep rooting system and can use
over 600 mm of soil water after several years of growth
(Halvorson and Richardson 2011). Other potential
forages include tall wheatgrass, slender wheatgrass, altai
wildrye, and tall fescue (Franzen 2013; McCauley and
Jones 2005). This water use lowers soil water content
throughout the soil surface profile. Forages grown at
soil water recharge and discharge areas would be most
beneficial to reduce the water table across the entire area
of the seep’s formation. Rainfall will further help flush
surface salts away from the surface in the location of the
saline seep.

Plant breeding continues to develop more salt-tolerant
crops that are well suited to managing saline seeps. Some
alfalfa varieties were suitable for growing in 15.6 dS m™!
soils, the highest tested rate (Steppuhn et al. 2012).
Beyond an individual saline seep, maintaining permanent
vegetative cover on agricultural soils can help reduce
saline soil risks at a landscape scale (Wiebe et al. 2007).

Selecting Forages for a Management Goal

Forages can serve many purposes, each of which modifies
soils to a different extent. For example, forages can be
grazed by livestock or harvested and fed to livestock.
The plant material has the same end use, but the type,
frequency, and other harvest factors affecting the soil
resource are very different. Forages can be used as cover
crops or incorporated into a crop rotation. For restoring
saline soils, forages can be used to modify water dynamics
and reduce soil salinity over time. Forages can also be
used to restore cover to landscapes as part of ecologic
restoration. When placed within a cropping system as a
conservation buffer, forages help reduce sediment loss.
Furthermore, the specific forage species that will be
best suited to address a specific management goal will
differ. Two examples illustrating the selection of forages
to address specific management goals and the resultant
forage-soil interactions are described below.

Cover Crops

Farmers report several motivations for using cover crops
to improve soil physical, chemical, and biologic proper-
ties (Table 12.7). This includes their ability to improve
soil health through changes in various soil carbon and



Chapter 12 Forages for Conservation and Improved Soil Quality

238

Table 127 Farmer reported motivations for using cover

crops

Motivating factors

% of respondents

Increase overall soil health
Increase soil organic matter
Reduce soil compaction

Reduce soil erosion

Scavenge nitrogen

Provide another nitrogen source
Choose diverse rooting systems

87
83
76
76
59
57
51

Source: From SARE/CTIC 2015-2016 Cover Crop Survey, p. 15,

(SARE 2017a).
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nitrogen fractions (Figure 12.8). Forages can also be
incorporated into prairie strips which have been shown
to reduce runoff and soil erosion (Schulte-Moore et al.
2020). As part of a crop rotation, long-term data evalu-
ating winter rye as a cover crop indicated no reduction
in subsequent crop yields (Basche et al. 2016). However,
there were significant soil changes that included a 10 to
11% increase in field capacity soil water content and a

21-22% increase in plant available water (Basche et al.
2016). As reported by cover crop survey participants, the
most widely planted cover crop is cereal rye, followed by
forage radish (Table 12.8).

In recent years, several resources have been developed
to help producers select appropriate forage species for a
variety of management goals including their use as cover
crops. Both state- and regionally-specific decision tools
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Table 12.8 Farmer reported cover crops used in the
United States

2015 2016
Planted Projected

Crop Hectares
cereal rye 75726 88082
radish 39589 49060
winter wheat 33408 30588
rapeseed 23235 24842
annual ryegrass 20256 26471
oat 20227 25670
crimson clover 19123 21005

Source: From SARE/CTIC 2015-2016 Cover Crop Survey,
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p. 21-27 (SARE 2017a).

have been developed for the Midwest (MCCC 2017),
Pacific Northwest (USDA NRCS 2016), Pennsylvania
(Penn State n.d.), and New York (Cornell University
2010). Information resources such as factsheets and other
online Extension materials are also available from indi-
vidual states or nationwide (SARE 2017b). An example
of the selection process for choosing cover crops to meet
specific soil and forage goals is presented in Table 12.9.
Using the Midwest Cover Crops Council decision tool,

different cover crops were suggested for goals such as
soil building, forage harvest, or grazing. The specific
forages recommended demonstrate the range of plant
species available for providing forage and improving soil
conservation.

Cover crops can also be incorporated as permanent
ground cover between crop rows where they function as
a living mulch. This practice is more common for fruit
and tree crops, though corn was successfully intercropped

Table 129 Midwest Cover Crops Council decision-tool selections for
cover crops in row crop production combining goals of soil builder,
forage harvest value, and good grazing?

Cover crop[’ Locations*
Alfalfa 1L, MI, MN, OH, ON
Annual ryegrass IL, MO, OH

Batley KS

Berseem clover IN, OH

Crimson clover IL, IN, MI, OH

Oat 1L, ON

Pearl millet

Red clover

Rye
Sorghum-sudangrass
Sudangrass

Triticale

Winter wheat

IL, IN, KS, MO, OH, WI

IL, IN, MI, OH, ON, WI

IA, KS, MI, MN, MO, ON, WI
IA, IN, KS, MN, OH, ON, WI
IA, IL, IN, MI, MN, OH, WI
IA, KS, MO

IA, KS, MO

Source: Midwest Cover Crops Council Row Crop Decision Tool (MCCC 2017).
“Generated for each state using all counties average.

*Listed cover crops are those that received “excellent” ratings in all three goals or

“excellent” ratings in at least two of three goals and “very good” ratings in one of

three goals. These are not the only cover crops that will meet producers’ needs in

these locations.

‘Towa (IA), Illinois (IL), Indiana (IN), Kansas (KS), Michigan (MI), Minnesota
(MN), Missouri (MO), Ohio (OH), Ontario (ON), Wisconsin (WT).
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with kura clover in Wisconsin (Ziyomo et al. 2013).
Having sufficient plant available soil water, however, can
be a major management challenge and result in significant
crop yield loss if the cover crop and cash crop are both
growing simultaneously (Qi et al. 2011; Ziyomo et al.
2013).

Water-induced yield losses might not occur every
year (Bartel et al. 2017) and can also be reduced if some
portion of the living mulch is terminated (Kumwenda
et al. 1993). Planting drought-resistant crops into liv-
ing mulches can overcome these potential yield losses.
Drought-resistant corn hybrids had approximately
three-fold higher yields when grown in living or killed
kura clover mulch treatments compared to drought-
susceptible corn varieties (Ziyomo et al. 2013).

From a soil-health perspective, fields with living
mulches may support higher soil fungal populations and
often have higher litter decomposition rates compared to
fields without living mulches (Nakamoto and Tsukamoto
2006). Living mulches may also allow higher rates of
corn stover removal for bioenergy and bio-product feed-
stock due to increased soil cover from the permanent
groundcover (Bartel et al. 2017).

Site Restoration

When restoring an entire site, such as occurs in mineland
reclamation, forages must survive in a wide range of soil
conditions. First, the soil itself must be deep enough to
establish plants. Plant production can depend on soil
depth of the restoration site and the type of underlying
material being remediated. For example, greater soil
replacement, such as up to 1.5m of new material, can
increase plant growth over acid spoil materials and sodic
materials, but may have less of an impact on other spoil
materials (Barth and Martin 1984). Fast-establishing
plant species can also help reduce competition by other
non-planted species (Wick et al. 2011). Numerous
forage species are suitable for mineland reclamation
because they can survive a range of soil conditions. The
examples, presented in Table 12.10 include species that
have the potential for mineland reclamation and a forage
source.

Forages provide multiple benefits in site restoration.
Potential contaminant migration from the site can be
reduced with forages that limit surface erosion and water
runoff (Pilon-Smits 2005). Forages can also stimulate
soil microbial degradation of contaminants, including
fescue and ryegrass (Pilon-Smits 2005). Grazing forages
grown in site restoration locations, such as from saline
soils, requires evaluating plant uptake that could harm
animal health (Masters et al. 2007). The forages should be
tested and compared to recommended tolerance ranges to
ensure animal health (National Research Council 2005).

Landscape Effects of Forages on Soil

The magnitude of forage effects on larger landscape
processes is site specific. The cover management factor
(C-factor) used in soil erosion calculations across Europe
could be reduced using forages as cover crops (Panagos
et al. 2015). This reduced factor would lead to reduced
soil erosion estimates from a given location. Cover crops
could reduce this C-factor more than 8% in some loca-
tions, and less than 0.5% in others (Panagos et al. 2015).
For comparison, changing tillage practices could reduce
the C-factor up to 30% in some locations and less than
5% in others (Panagos et al. 2015). These modeled data
are useful for demonstrating how forages can be helpful
in reducing landscape level soil erosion, and how forages
are one piece of larger management changes that can help
reduce erosion.

Forages in conservation buffers were shown to be
effective in reducing ephemeral gully formation (Helmers
et al. 2012). Ephemeral gully erosion is implicated in
increasing the sedimentation of reservoirs (Fox et al.
2016). However, larger watershed level impacts of con-
servation buffers can vary by watershed characteristics.
Stream sediments can come from several sources includ-
ing channel and bank erosion, as well as previously eroded
sediments that become re-suspended (legacy sources) (Fox
et al. 2016; Tomer and Locke 2011).

Increased nutrient and sediment losses in the Lincoln
Lake (Arkansas and Oklahoma) watershed evaluated
between 1992 and 2004, resulted from a combination of
increased urbanization and increased N applications to
pasture areas (Chiang et al. 2010). Variations occurred
among the three sub-watersheds evaluated. In two of
the three sub-watersheds, land use change increased total
N losses to a greater extent than pasture management
(3.8-5.1kgNha™! vs 1-1.7kgNha™"). In the other
sub-watershed, pasture management had a higher impact
on N losses compared to urbanization (4.3 kgNha™! vs
0.8 kg N ha™!). In this sub-watershed, N applications to
pasture increased from 147 kgNha™' to 332 kgN ha™!
between 1992 and 2004 (Chiang et al. 2010).

Nutrient models for this watershed estimated that
between 3% and 39% increases in N losses would
occur if excess nutrients were available in combination
with minimal plant growth. This situation occurred if
overgrazing and summer or fall applications of poultry
litter were used. The range in estimated N losses was
influenced by weather variability (Chaubey et al. 2010).
These landscape level effects highlight the importance of
combining forages with comprehensive soil conservation
management.

Sound Management Maximizes Soil Conservation
Benefits

Soil conservation benefits from forages are generally deter-
mined by site-specific management practices. The need



Table 1210 Examples of plants suitable for both mineland reclamation and forage potential

Common name Type United States region Note Suitable soil textures Forage
Alkali sacaton Perennial, warm-season, Arid, semi-arid Western Tolerates saline soils Light to heavy Good source
bunchgrass

Great basin wildrye

Black grama
Coastal panicgrass

Florida paspalum

Orchardgrass

Sideoats grama

Perennial, cool-season,
bunchgrass

Warm-season, stoloniferous

Perennial, Warm-season,
bunchgrass

Perennial, warm-season,
bunchgrass

Perennial, cool-season,
bunchgrass

Perennial, warm-season,
bunchgrass

Western

Southwest

Mid-Atlantic coastal plain,
and piedmont regions

Southeast United States

Nationwide

Nationwide

Tolerates acidic and heavy
metals

Salt-tolerant

Facultative wetland plant

Not adapted for saline or
high-water table soils,
invasive potential

Moderately tolerable of
saline soils

Loamy to sandy

Dry-gravelly, sandy,
sandy-loam

Coarse to fine, including
coastal dunes

Coarse to moderately fine

Clay to gravelly loams

Coarse to fine

Provides winter forage,
avoid heavy grazing
during active growth

Sustained forage
production

Fair palatable graze

Palatable, forage value
highest for earlier growth
stages, not
recommended as grazing
monoculture

Cool season forage

Plants need 12 months
development before
grazing

Source: Adapted from USDA NRCS Plant Materials Program Conservation Plant Releases (USDA NRCS 2017).
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for additional quantitative information on how soil man-
agement practices affect a range of soil types remains a
long-recognized issue (Pierre 1946). For example, forages
tend to increase aggregation, particularly for larger soil
aggregates (>1 or >2mm). Forage effects on soil prop-
erties within grazing management systems are affected by
stocking rates, soil moisture content, crop cover, and land-
scape position (Russell and Bisinger 2015). Soil conserva-
tion benefits may be seen at the soil surface, such as from 0
to 5-cm, and may extend down the soil profile, as occurred
in alfalfa water use in saline seep areas.

Theoretically, the forage effect on soil properties
depends on which forages are grown, site management
(planting, harvesting, etc.), and how forages are utilized
(cover crop, crop rotation, animal forage, etc). This
chapter has highlighted several ways forages affect soil
properties. Well-informed site-specific management can
ensure forages help maintain and build a stable soil
resource. For example, as noted by Pierre in 1946, there
was a “relatively new forage crop combination” available
in the Midwest US that included smooth bromegrass
and alfalfa. This combination produced quality forage,
and had “high value in soil improvement and conser-
vation.” However, Pierre noted, “whether or not (the
forage crop combination) makes the contribution to
soil improvement in the Corn Belt that it can, however,
will probably depend largely on its management” (Pierre
1946, p. 5). This management included incorporating
the forage into a crop rotation rather than planting it
permanently, separate from other crops. Seventy years
later, this recommendation remains the same.
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