650 research outputs found

    The Host Galaxies of Fast-Ejecta Core-Collapse Supernovae

    Get PDF
    Spectra of broad-lined Type Ic supernovae (SN Ic-BL), the only kind of SN observed at the locations of long-duration gamma-ray bursts (LGRBs), exhibit wide features indicative of high ejecta velocities (~0.1c). We study the host galaxies of a sample of 245 low-redshift (z<0.2) core-collapse SN, including 17 SN Ic-BL, discovered by galaxy-untargeted searches, and 15 optically luminous and dust-obscured z<1.2 LGRBs. We show that, in comparison with SDSS galaxies having similar stellar masses, the hosts of low-redshift SN Ic-BL and z<1.2 LGRBs have high stellar-mass and star-formation-rate densities. Core-collapse SN having typical ejecta velocities, in contrast, show no preference for such galaxies. Moreover, we find that the hosts of SN Ic-BL, unlike those of SN Ib/Ic and SN II, exhibit high gas velocity dispersions for their stellar masses. The patterns likely reflect variations among star-forming environments, and suggest that LGRBs can be used as probes of conditions in high-redshift galaxies. They may be caused by efficient formation of massive binary progenitors systems in densely star-forming regions, or, less probably, a higher fraction of stars created with the initial masses required for a SN Ic-BL or LGRB. Finally, we show that the preference of SN Ic-BL and LGRBs for galaxies with high stellar-mass and star-formation-rate densities cannot be attributed to a preference for low metal abundances but must reflect the influence of a separate environmental factor.Comment: Accepted by ApJ 9 May 2014 with only minor revision

    Monte Carlo Method for Calculating Oxygen Abundances and Their Uncertainties from Strong-Line Flux Measurements

    Full text link
    We present the open-source Python code pyMCZ that determines oxygen abundance and its distribution from strong emission lines in the standard metallicity calibrators, based on the original IDL code of Kewley & Dopita (2002) with updates from Kewley & Ellison (2008), and expanded to include more recently developed calibrators. The standard strong-line diagnostics have been used to estimate the oxygen abundance in the interstellar medium through various emission line ratios in many areas of astrophysics, including galaxy evolution and supernova host galaxy studies. We introduce a Python implementation of these methods that, through Monte Carlo sampling, better characterizes the statistical oxygen abundance confidence region including the effect due to the propagation of observational uncertainties. These uncertainties are likely to dominate the error budget in the case of distant galaxies, hosts of cosmic explosions. Given line flux measurements and their uncertainties, our code produces synthetic distributions for the oxygen abundance in up to 15 metallicity calibrators simultaneously, as well as for E(B-V), and estimates their median values and their 68% confidence regions. We test our code on emission line measurements from a sample of nearby supernova host galaxies (z < 0.15) and compare our metallicity results with those from previous methods. Our metallicity estimates are consistent with previous methods but yield smaller statistical uncertainties. Systematic uncertainties are not taken into account. We offer visualization tools to assess the spread of the oxygen abundance in the different calibrators, as well as the shape of the estimated oxygen abundance distribution in each calibrator, and develop robust metrics for determining the appropriate Monte Carlo sample size. The code is open access and open source and can be found at https://github.com/nyusngroup/pyMCZ (Abridged)Comment: Accepted for publication in Astronomy& Computing, 2016. The code is open-access, open-source, and suggestions and improvements are welcome! The python module is available at https://github.com/nyusngroup/pyMC

    Probing Explosion Geometry of Core-collapse Supernovae with Light Curves of the Shock Breakout

    Full text link
    We investigate effects of aspherical energy deposition in core-collapse supernovae on the light curve of the supernova shock breakout. We performed two-dimensional hydrodynamical calculations of an aspherical supernova explosion to obtain the time when a shock wave generated in the stellar interior reaches the stellar surface in each radial direction. Using results of the calculations, light curves during the shock breakout are derived in an approximate way. We show that the light curve during the shock breakout can be a strong indicator of aspherical properties of core-collapse supernovae.Comment: 5 pages, 5 figures, to appear in ApJ

    Non-thermal photon production via bulk comptonization at supernova shock breakout

    Full text link
    We investigate roles of the bulk comptonization process in the propagation of thermal photons emitted at the shock breakout of a supernova explosion. We use a hydrodynamical model based on a self-similar solution for the shock breakout. The propagation of photons is treated by a Monte-Carlo technique. Results of the simulations successfully reproduce the power-law spectrum observed by X-ray observations for XRF 080109/SN 2008D, if a mildly relativistic shock velocity is assumed. Effects of some radiative processes, photoionization, radiative recombination, and free-free absorption on the propagation of emitted photons are also investigated. It is found that none of them hardly changes the spectrum regarding the progenitor stars of type Ib or Ic supernovae. Light curves calculated under the assumption of a spherical explosion indicate that the progenitor radius is required to be /sim1013/sim 10^{13} cm.Comment: 10pages, 6 figures, to appear in Ap

    The early UV/Optical emission from core-collapse supernovae

    Full text link
    We derive a simple approximate model describing the early, hours to days, UV/optical supernova emission, which is produced by the expansion of the outer <~0.01 solar mass part of the shock-heated envelope, and precedes the optical emission driven by radioactive decay. Our model includes an approximate description of the time dependence of the opacity (due mainly to recombination), and of the deviation of the emitted spectrum from a black body spectrum. We show that the characteristics of the early UV/O emission constrain the radius of the progenitor star, its envelope composition, and the ratio of the ejecta energy to its mass, E/M. For He envelopes, neglecting the effect of recombination may lead to an over estimate of progenitor radius by more than an order of magnitude. We also show that the relative extinction at different wavelengths may be inferred from the light-curves at these wave-lengths, removing the uncertainty in the estimate of progenitor radius due to reddening (but not the uncertainty in E/M due to uncertainty in absolute extinction). The early UV/O observations of the type Ib SN2008D and of the type IIp SNLS-04D2dc are consistent with our model predictions. For SN2008D we find progenitor radius to be approx. 10^11 cm, and an indication that the He envelope contains a significant C/O fraction.Comment: 18 pages, 13 figures. Expanded discussion of diffusio
    corecore