12 research outputs found

    Cryptic Diversity of African Tigerfish (Genus Hydrocynus) Reveals Palaeogeographic Signatures of Linked Neogene Geotectonic Events

    Get PDF
    The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish

    A ca. 200 Ma hiatus between the Lower and Upper Transvaal Groups of southern Africa: SHRIMP U-Pb detrital zircon evidence from the Segwagwa Group, Botswana: Implications for Palaeoproterozoic glaciations

    No full text
    The Segwagwa Group of southeastern Botswana, a correlate of the Pretoria Group of the Transvaal Supergroup of South Africa, consists of a major sequence of siliciclastic sedimentary rocks, minor carbonates and basaltic to andesitic lavas and tuffs straddling the Western and Central Domains of the Kaapvaal Craton. The Segwagwa Group unconformably overlies the Taupone Dolomite Group, a correlative of the South African Chuniespoort/Ghaap Groups of the Transvaal Supergroup. SHRIMP U-Pb analyses of 123 detrital zircons from the top, middle and bottom of the Segwagwa Group sedimentary rocks include 96 concordant to near-concordant zircons defining three main age groups: >3.0-2.9 Ga (n = 12), 2.8-2.5 Ga (n = 27) and 2.45-2.20 Ga (n = 57). The ≥2.90 Ga zircons were sourced from granitoids emplaced before and around 2915 ± 12 Ma and are related to the amalgamation of the Western, Northern and Central Domains of the Kaapvaal Craton. Concordant zircons with a mean age of 2781 ± 8 Ma originate from the Gaborone Igneous Complex. The detrital zircons in the range 2.7-2.5 Ga were likely sourced from the Kalahari continental fragment made up of the Kaapvaal Craton, Limpopo Belt and the Zimbabwe Craton, specifically from the Limpopo Belt and/or the Zimbabwe Craton where igneous rocks in this age range are widespread. The igneous sources for the Palaeoproterozoic (ca. 2.45-2.20 Ga) zircons are difficult to identify since igneous rocks in that age are not widely known or documented by reliable dates in the Kalahari Craton. The youngest zircons of ca. 2.2 Ga occur in all the sandstones and form the main group (>90%) in the sample from the top of the Segwagwa Group. The youngest detrital zircon of 2193 ± 20 Ma sets the maximum time of deposition of the Segwagwa Group. Published data suggest that the minimum deposition age of Chuniespoort/Ghaap Group sedimentary rocks is 2431 ± 31 Ma [D.R. Nelson, Compilation of SHRIMP U-Pb zircon Geochronological Data, 1996 Record 1997/2, pp. 189, Western Australia Geological Survey, 1997.]. Therefore, the unconformity between the Lower and Upper Transvaal represents a ∼200 Ma hiatus, and the lithostratigraphic units on the two sides of the unconformity should not be grouped in the same supergroup. Detrital zircon ages suggest that the time of deposition of the Segwagwa/Pretoria Group which ranges from ca. 2.40 to 2.20 Ga is coeval with the Palaeoproterozoic global glacial deposits in North America, Australia and Fennoscandia; and with sedimentary rocks from the Palaeoproterozoic Magondi Belt. Therefore, the Segwagwa/Pretoria Group and the Magondi metasedimentary succession were deposited during the first global glacial period, are possibly related to the same geodynamic cycle, and should be part of the same supergroup

    Magma flow revealed by magnetic fabric in the Okavango giant dyke swarm, Karoo igneous province, northern Botswana

    No full text
    International audienceTo determine the magma flow direction of the giant, 179 Ma Okavango dyke swarm of northern Botswana, we measured the anisotropy of magnetic susceptibility (AMS) of 23 dykes. Dykes are located in two sections (Shashe and Thune Rivers), which are about 300 km and 400 km from the presumed magma source respectively; the Nuanetsi triple point. We collected samples from the margins of the dykes in order to use the imbrication of magnetic foliation to determine magma flow direction. About half of the magnetic fabric in the dykes is inverse, i.e. with the magnetic foliation perpendicular to the dyke plane. Lateral flow to the west and vertical flow is in evidence in the Shashe section. However, the overall analysis of normal and inverse magnetic fabric data supports that lateral flow to the west was dominant in the Shashe section. Across the Thune section, a poorly defined imbricated magnetic foliation also suggests lateral flow to the wes

    Use of the geochemical and biological sedimentary record in establishing palaeo-environments and climate change in the Lake Ngami basin, NW Botswana

    No full text
    Sediment samples from a continuous 4.6 m profile in the dry bed of Lake Ngami in NW Botswana were analysed for geochemistry and dated using both 14C and TL methods. Certain units in the profile were found to be diatom rich and these, with the geochemical results, were used as indicators of high and low lake levels within the basin. The Lake Ngami sediments contain a high proportion of SiO2 (51–92.5 wt%, avg. 72.4 wt%) and variable levels of Al2O3 (2.04–17.2 wt%, avg. 8.88 wt%). Based on elevated Al2O3 and organic matter (LOIorgC ) results, lacustrine conditions occurred at ca. 42 ka until 40 ka and diatom results suggest that relatively deep but brackish conditions prevailed. At 40 ka, the lacustrine sedimentary record was terminated abruptly, possibly by tectonic activity. At ca. 19 ka, shallow, aerobic, turbulent conditions were prevalent, but lake levels were at this time increasing to deeper water conditions up until ca. 17 ka. This period coincides with the Late Glacial Maximum, a period of increased aridity in the central southern Africa region. Generally, increasing Sr/Ca ratios and decreasing LOIorgC and Al2O3, from ca. 16 to 5 ka, suggest decreasing inflow into the basin and declining lake levels. Based on the enrichment of LREE results, slightly alkaline conditions prevailed at ca. 12 ka. Diatom results also support shallow alkaline conditions around this time. These lake conditions were maintained primarily by local rainfall input as the region experienced a warmer, wetter phase between 16 and 11 ka. Lake levels rose rapidly by 4 ka, probably in response to enhanced rainfall in the Angolan catchment. These results indicate that lake levels in the Lake Ngami basin are responding to rainfall changes in the Angolan catchment area and local rainfall. The results confirm that the present-day anti-phase rainfall relationship between southern Africa and regions of equatorial Africa was extant during the late Quaternary over the Angolan highlands and NW Botswana

    40Ar/39Ar geochronology and structural data from the giant Okavango and related mafic dyke swarms, Karoo igneous province, N-Botswana

    No full text
    Earth and Planetary Science Letters, v. 202, n. 3-4, p. 595-606 [433], 2002. http://dx.doi.org/10.1016/S0012-821X(02)00763-XInternational audienc
    corecore