713 research outputs found

    Optical transparency of mesoporous metals

    Full text link
    We examine the optical properties of metals containing a periodic arrangement of nonoverlapping spherical mesopores, empty or filled with a dielectric material. We show that a slab of such a porous metal transmits light over regions of frequency determined by the dielectric constant of the cavities and the fractional volume occupied by them, with an efficiency which is many orders of magnitude higher than predicted by standard aperture theory. Also, the system absorbs light efficiently over the said regions of frequency unlike the homogeneous metal.Comment: 9 pages in total, 3 figures To be published in Solid State Communication

    On wave propagation in inhomogeneous systems

    Full text link
    We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of non-overlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities, impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism.Comment: 12 page

    Scattering of elastic waves by elastic spheres in a NaCl-type phononic crystal

    Full text link
    Based on the formalism developed by Psarobas et al [Phys. Rev. B 62, 278(2000)], which using the multiple scattering theory to calculate properties of simple phononic crystals, we propose a very simple method to study the NaCl-type phononic crystal. The NaCl-type phononic crystal consists of two kinds of non-overlapping elastic spheres with different mass densities, LaˊmeL\acute{a}me coefficients and radius following the same periodicity of the ions in the real NaCl crystal. We focus on the (001) surface, and view the crystal as a sequence of planes of spheres, each plane of spheres has identical 2D periodicity. We obtained the complex band structure of the infinite crystal associated with this plane, and also calculated the transmission, reflection and absorption coefficients for an elastic wave (longitudinal or transverse) incident, at any angle, on a slab of the crystal of finite thickness.Comment: 15 pages, 6 figure

    Musiikkivideot nuorten ja tutkijoiden silmin

    Get PDF
    Aineisto on Opiskelijakirjaston digitoimaa ja Opiskelijakirjasto vastaa aineiston käyttöluvist

    Simulation for field emission images of micrometer-long SWCNTs

    Full text link
    The electron distribution of open-ended single-walled carbon nanotubes with chirality indexes (7,0) and (5,5) in the field emission conditions was calculated via a multi-scaled algorithm. The field emission images were produced numerically. It was found that the emission patterns change with the applied macroscopic field. Especially, the symmetry of the emission pattern of the (7,0) carbon nanotube is breaking in the lower field but the breaking is less obvious in the higher field. The enlargement factor increases with the applied macroscopic field.Comment: 8 pages, 4 figure

    Viscoelastic response of sonic band-gap materials

    Full text link
    A brief report is presented on the effect of viscoelastic losses in a high density contrast sonic band-gap material of close-packed rubber spheres in air. The scattering properties of such a material are computed with an on-shell multiple scattering method, properties which are compared with the lossless case. The existence of an appreciable omnidirectional gap in the transmission spectrum, when losses are present, is also reported.Comment: 5 pages, 4 figures, submitted to PR
    corecore