30 research outputs found

    Self-completeness and spontaneous dimensional reduction

    Get PDF
    A viable quantum theory of gravity is one of the biggest challenges facing physicists. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity -- spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it is not. In such a way we established an "exclusive disjunction" or "exclusive or" (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of Einstein gravity.Comment: 12 pages, 3 figures; v3: final version in press on Eur. Phys. J. Plu

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure

    The Hawking-Page crossover in noncommutative anti-deSitter space

    Full text link
    We study the problem of a Schwarzschild-anti-deSitter black hole in a noncommutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.Comment: 24 pages, 6 figure, 1 table, version matching that published on JHE

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    The Hidden Quantum Groups Symmetry of Super-renormalizable Gravity

    Full text link
    In this paper we consider the relation between the super-renormalizable theories of quantum gravity (SRQG) studied in [arXiv:1110.5249v2, arXiv:1202.0008] and an underlying non-commutativity of spacetime. For one particular super-renormalizable theory we show that at linear level (quadratic in the Lagrangian) the propagator of the theory is the same we obtain starting from a theory of gravity endowed with {\theta}-Poincar\'e quantum groups of symmetry. Such a theory is over the so called {\theta}-Minkowski non-commuative spacetime. We shed new light on this link and show that among the theories considered in [arXiv:1110.5249v2, arXiv:1202.0008], there exist only one non-local and Lorentz invariant super-renormalizable theory of quantum gravity that can be described in terms of a quantum group symmetry structure. We also emphasize contact with pre-existent works in the literature and discuss preservation of the equivalence principle in our framework.Comment: 10 page

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    Super-renormalizable Quantum Gravity

    Full text link
    In this paper we study perturbatively an extension of the Stelle higher derivative gravity involving an infinite number of derivative terms. We know that the usual quadratic action is renormalizable but suffers of the unitarity problem because of the presence of a ghost (state of negative norm) in the theory. The new theory is instead ghost-free since the introduction of (in general) two entire functions in the model with the property do not introduce new poles in the propagator. The local high derivative theory is recovered expanding the entire functions to the lowest order in the mass scale of the theory. Any truncation of the entire functions gives rise to the unitarity violation but if we keep all the infinite series we do not fall into these troubles. The theory is renormalizable at one loop and finite from two loops on. Since only a finite number of graphs are divergent then the theory is super-renormalizable. We analyze the fractal properties of the theory at high energy showing a reduction of the spacetime dimension at short scales. Black hole spherical symmetric solutions are also studied omitting the high curvature corrections in the equation of motions. The solutions are regular and the classical singularity is replaced by a "de Sitter-like core" in r=0. Black holes may show a "multi-horizon" structure depending on the value of the mass.Comment: 13 pages, 11 figure

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Entropic force approach to noncommutative Schwarzschild black holes signals a failure of current physical ideas

    Full text link
    Recently, a new perspective of gravitational-thermodynamic duality as an entropic force arising from alterations in the information connected to the positions of material bodies is found. In this paper, we generalize some aspects of this model in the presence of noncommutative Schwarzschild black hole by applying the method of coordinate coherent states describing smeared structures. We implement two different distributions: (a) Gaussian and (b) Lorentzian. Both mass distributions prepare the similar quantitative aspects for the entropic force. Our study shows, the entropic force on the smallest fundamental unit of a holographic screen with radius r0r_0 vanishes. As a result, black hole remnants are unconditionally inert even gravitational interactions do not exist therein. So, a distinction between gravitational and inertial mass in the size of black hole remnant is observed, i.e. the failure of the principle of equivalence. In addition, if one considers the screen radius to be less than the radius of the smallest holographic surface at the Planckian regime, then one encounters some unusual dynamical features leading to gravitational repulsive force and negative energy. On the other hand, the significant distinction between the two distributions is conceived to occur around r0r_0, and that is worth of mentioning: at this regime either our analysis is not the proper one, or non-extensive statistics should be employed.Comment: 15 pages, 2 figures, new references added, minor revision, Title changed, to appear in EPJ Plu

    Quantum gravity effects in Myers-Perry space-times

    Get PDF
    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton's coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions
    corecore