52 research outputs found

    H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations

    Get PDF
    Ambient vibration techniques such as the H/V method may have the potential to significantly contribute to site effect evaluation, particularly in urban areas. Previous studies interpret the so-called Nakamura's technique in relation to the ellipticity ratio of Rayleigh waves, which, for a high enough impedance contrast, exhibits a pronounced peak close to the fundamental S-wave resonance frequency. Within the European SESAME project (Site EffectS assessment using AMbient Excitations) this interpretation has been tested through noise numerical simulation under well-controlled conditions in terms of source type and distribution and propagation structure. We will present simulations for a simple realistic site (one sedimentary layer over bedrock) characterized by a rather high impedance contrast and low quality factor. Careful H/V and array analysis on these noise synthetics allow an in-depth investigation of the link between H/V ratio peaks and the noise wavefield composition for the soil model considered here: (1) when sources are near (4 to 50 times the layer thickness) and surficial, H/V curves exhibit one single peak, while the array analysis shows that the wavefield is dominated by Rayleigh waves; (2) when sources are distant (more than 50 times the layer thickness) and located inside the sedimentary layer, two peaks show up on the H/V curve, while the array analysis indicates both Rayleigh waves and strong S head waves; the first peak is due to both fundamental Rayleigh waves and resonance of head S waves, the second is only due to the resonance of head S waves; (3) when sources are deep (located inside the bedrock), whatever their distance, H/V ratio exhibit peaks at the fundamental and harmonic resonance frequencies, while array analyses indicate only non-dispersive body waves; the H/V is thus simply due to multiple reflections of S waves within the layer. Therefore, considering that experimental H/V ratio (i.e. derived from actual noise measured in the field) exhibit in most cases only one peak, we conclude that H/V ratio is (1) mainly controlled by local surface sources, (2) mainly due to the ellipticity of the fundamental Rayleigh waves. Then the amplitude of H/V peak is not able to give a good estimate of site amplification facto

    PRENOLIN project. Results of the validation phase at sendai site

    Get PDF
    One of the objectives of the PRENOLIN project is the assessment of uncertainties associated with non-linear simulation of 1D site effects. An international benchmark is underway to test several numerical codes, including various non-linear soil constitutive models, to compute the non-linear seismic site response. The preliminary verification phase (i.e. comparison between numerical codes on simple, idealistic cases) is now followed by the validation phase, which compares predictions of such numerical estimations with actual strong motion data recorded from well-known sites. The benchmark presently involves 21 teams and 21 different non-linear computations. Extensive site characterization was performed at three sites of the Japanese KiK-net and PARI networks. This paper focuses on SENDAI site. The first results indicate that a careful analysis of the data for the lab measurement is required. The linear site response is overestimated while the non-linear effects are underestimated in the first iteration. According to these observations, a first set of recommendations for defining the non-linear soil parameters from lab measurements is proposed. PRENOLIN is part of two larger projects: SINAPS@, funded by the ANR (French National Research Agency) and SIGMA, funded by a consortium of nuclear operators (EDF, CEA, AREVA, ENL)

    100 rokov seizmologie na Slovensku

    No full text
    Available from Slovak Centre of Scientific and Technical Information, under shelf-number: A582478 / Slovenska Technicka Univerzita v BratislaveSIGLESKSlovak Republi

    3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio

    No full text
    International audienceWe analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave propagation and earthquake motion for their behaviour with a varying P-wave to S-wave speed ratio (VP/VS). The second-order schemes include three finite-difference, three finite-element and one discontinuous-Galerkin schemes. The fourth-order schemes include three finite-difference and two spectral-element schemes. All schemes are second-order in time. We assume a uniform cubic grid/mesh and present all schemes in a unified form. We assume plane S-wave propagation in an unbounded homogeneous isotropic elastic medium. We define relative local errors of the schemes in amplitude and the vector difference in one time step and normalize them for a unit time. We also define the equivalent spatial sampling ratio as a ratio at which the maximum relative error is equal to the reference maximum error. We present results of the extensive numerical analysis. We theoretically (i) show how a numerical scheme sees the P and S waves if the VP/VS ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and (iii) compare the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial derivatives. We find that four of the tested schemes have errors in amplitude almost independent on the VP/VS ratio. The homogeneity of the approximations to the second mixed and non-mixed spatial derivatives in terms of the coefficients of the leading terms of their truncation errors as well as the absolute values of the coefficients are key factors for the behaviour of the schemes with increasing VP/VS ratio. The dependence of the errors in the vector difference on the VP/VS ratio should be accounted for by a proper (sufficiently dense) spatial sampling

    Mixed spectral finite elements for the linear elasticity system in unbounded domains

    No full text
    International audienceIn this paper, we present a mixed formulation of a spectral element approximation of the linear elasticity system. After studying the main features of this approach, we construct perfectly matched layers (PMLs) for modeling unbounded domains. Then, algorithmic issues are discussed and numerical results are given. Copyright © 2005 Society for Industrial and Applied Mathematic

    Computation of amplification factor of earthquake ground motion for a local sedimentary structure

    No full text
    International audienceWe present methodology of calculating acceleration and corresponding earthquake ground motion characteristics at a site of interest assuming acceleration at a reference site for two basic configurations. In one configuration we assume that the reference ground motion is not affected by the local structure beneath the site of interest. In the other configuration we assume that the reference ground motion is affected by the local structure.Consequently, the two configurations differ from each other by the presence of the reference site within the computational model. For each of the two configurations we assume two wavefield excitations: a vertical plane-wave incidence and a point double-couple source. We illustrate the methodology on the example of the Grenoble valley. The extensiveinvestigation of effects of local surface sedimentary structures based on the developed methodology is presented in the accompanying article by Moczo et al. (Bull Earthq Eng, 2018) in this volume

    Dispersion of love waves along chosen Euro-Asiatic paths

    No full text

    2D seismic wave propagation using the distributional finite-difference method: further developments and potential for global seismology

    No full text
    International audienceWe present a time-domain distributional finite-difference scheme based on the Lebedev staggered grid for the numerical simulation of wave propagation in acoustic and elastic media. The central aspect of the proposed method is the representation of the stresses and displacements with different sets of B-splines functions organized according to the staggered grid. The distributional finite-difference approach allows domain-decomposition, heterogeneity of the medium, curvilinear mesh, anisotropy, non-conformal interfaces, discontinuous grid, and fluid-solid interfaces. Numerical examples show that the proposed scheme is suitable to model wave propagation through the Earth, where sharp interfaces separate large, relatively homogeneous layers. A few domains or elements are sufficient to represent the Earth’s internal structure without relying on advanced meshing techniques. We compare seismograms obtained with the proposed scheme and the spectral element method, and we show that our approach offers superior accuracy, reduced memory usage, and comparable efficiency
    • 

    corecore