190 research outputs found

    La imagen metafórica de una persona en la prosa rusa durante la primera mitad del siglo XX

    Get PDF
    The originality of the author’s individual metaphor in the Russian prose during the first half of the XX century was researched in the article. The specific of the metaphorical description of the inner world of a person and his social existence were considered in the works of I. A. Bunin, V. V. Nabokov, M. M. Prishvin, I. S. Shmelev.En el artículo se investigó la originalidad de la metáfora individual del autor en la prosa rusa durante la primera mitad del siglo XX. Lo específico de la descripción metafórica del mundo interior de una persona y su existencia social se consideraron en las obras de I. A. Bunin, V. V. Nabokov, M. M. Prishvin, I. S. Shmelev

    Achieving Superlubricity with 2D Transition Metal Carbides (MXenes) and MXene/Graphene Coatings

    Get PDF
    Two-dimensional (2D) materials have demonstrated unique friction and antiwear properties unmatched by their bulk (3D) counterparts. A relatively new, large and quickly growing family of two-dimensional early transition metal carbides and nitrides (MXenes) present a great potential in different applications. There is a growing interest in understanding the mechanical and tribological properties of MXenes, however, no report of MXene superlubricity in a solid lubrication process at the macroscale has been presented. Here we investigate the tribological properties of two-dimensional titanium carbide (Ti3C2) MXene deposited on SiO2-coated silicon (Si) substrates subjected to wear by sliding against a diamond-like carbon (DLC)-coated steel ball counterbody using a ball-on-disc tribometer. We have observed that a reduction of the friction coefficient to the superlubric regime (0.0067 ± 0.0017) can be achieved with Ti3C2 MXene in dry nitrogen environment. Moreover, the addition of graphene to Ti3C2 further reduced the friction by 37.3% and wear by the factor of 2 as compared to Ti3C2 alone, while the superlubricity behavior of the MXene remains unchanged. These results open up new possibilities for exploring the family of MXenes in various tribological applications

    Perspectives of 2D MXene Tribology

    Get PDF
    The Large and Rapidly Growing Family of 2D Early Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes) Raises Significant Interest in the Materials Science and Chemistry of Materials Communities. Discovered a Little More Than a Decade Ago, MXenes Have Already Demonstrated Outstanding Potential in Various Applications Ranging from Energy Storage to Biology and Medicine. the Past Two Years Have Witnessed Increased Experimental and Theoretical Efforts toward Studying MXenes\u27 Mechanical and Tribological Properties When Used as Lubricant Additives, Reinforcement Phases in Composites, or Solid Lubricant Coatings. Although Research on the Understanding of the Friction and Wear Performance of MXenes under Dry and Lubricated Conditions is Still in its Early Stages, It Has Experienced Rapid Growth Due to the Excellent Mechanical Properties and Chemical Reactivities Offered by MXenes that Make Them Adaptable to Being Combined with Other Materials, Thus Boosting their Tribological Performance. in This Perspective, the Most Promising Results in the Area of MXene Tribology Are Summarized, Future Important Problems to Be Pursued Further Are Outlined, and Methodological Recommendations that Could Be Useful for Experts as Well as Newcomers to MXenes Research, in Particular, to the Emerging Area of MXene Tribology, Are Provided

    Friction and wear properties of nano-Si<inf>3</inf>N<inf>4</inf>/nano-SiC composite under nanolubricated conditions

    Get PDF
    Friction and wear properties of nano-Si3N4/nano-SiC composite were studied under nanolubricated conditions. Mineral oil mixed with nanoparticles of diamond was used as lubricant. A friction coefficient of 0.043 and a wear coefficient of 4.2×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil + 0.5 wt% nanodiamond, whereas a friction coefficient of 0.077 and a wear coefficient of 10.3×10-7 were obtained for nano-Si3N4/nano-SiC composite under normal load of 600 N with mineral oil. 3D surface profilometer was used to study the surface morphology of wear scars. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were conducted to illustrate reduction in friction and wear

    Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.

    Get PDF
    Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here

    Phospholipid Composition Modulates Carbon Nanodiamond-Induced Alterations in Phospholipid Domain Formation

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/la504923j.The focus of this work is to elucidate how phospholipid composition can modulate lipid nanoparticle interactions in phospholipid monolayer systems. We report on alterations in lipid domain formation induced by anionically engineered carbon nanodiamonds (ECNs) as a function of lipid headgroup charge and alkyl chain saturation. Using surface pressure vs area isotherms, monolayer compressibility, and fluorescence microscopy, we found that anionic ECNs induced domain shape alterations in zwitterionic phosphatidylcholine lipids, irrespective of the lipid alkyl chain saturation, even when the surface pressure vs area isotherms did not show any significant changes. Bean-shaped structures characteristic of dipalmitoylphosphatidylcholine (DPPC) were converted to multilobed, fractal, or spiral domains as a result of exposure to ECNs, indicating that ECNs lower the line tension between domains in the case of zwitterionic lipids. For membrane systems containing anionic phospholipids, ECN-induced changes in domain packing were related to the electrostatic interactions between the anionic ECNs and the anionic lipid headgroups, even when zwitterionic lipids are present in excess. By comparing the measured size distributions with our recently developed theory derived by minimizing the free energy associated with the domain energy and mixing entropy, we found that the change in line tension induced by anionic ECNs is dominated by the charge in the condensed lipid domains. Atomic force microscopy images of the transferred anionic films confirm that the location of the anionic ECNs in the lipid monolayers is also modulated by the charge on the condensed lipid domains. Because biological membranes such as lung surfactants contain both saturated and unsaturated phospholipids with different lipid headgroup charges, our results suggest that when studying potential adverse effects of nanoparticles on biological systems the role of lipid compositions cannot be neglected

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    Effects of Surface Chemistry and Crystal Size on Raman Spectra of Nanodiamond

    Get PDF
    The article of record as published may be found at https://doi.org/10.1017/S1431927612009592Detonation nanodiamonds (ND) exhibit exceptional properties due to their small size, rich surface chemistry, and high surface to volume ratio compared to bulk diamonds [1]. These unique characteristics also affect their Raman spectra. While for other carbon nanomaterials Raman spectroscopy is routinely used for analysis of the structure, ordering and dimensions; the presence of large amounts of non-diamond carbon, broad crystal size distributions, and numerous surface functional groups severely limit the potential of Raman spectroscopy for ND characterization due to poor understanding of their spectral features

    ВЫБОР МАКРОЛОГИСТИЧЕСКИХ ВЗАИМОДЕЙСТВИЯ ВИДЕ ЧЕРЕЗ ПРИГРАНИЧНОГО СОТРУДНИЧЕСТВА УЧИТЫВАЯ ОМСКОЙ ОБЛАСТИ И ПРИГРАНИЧНЫХ ОБЛАСТЕЙ КАЗАХСТАНА

    No full text
    Modern conditions of international economic integration provide the necessity of forming the physical distribution system based on logistical principles. Assurance of cargo flow movement on the macro level with the regard for implementation of international standards of logistical service requires development of macrologistical interaction. The objectively existing forms of macrologistical interaction and their special features are described in the article, forms of interaction which can be realized in terms of frontier cooperation are defined. The authors provide an approach to selection of the most rational form of macrologistical interaction for specific economical conditions. As an example, interaction of Omsk Region and frontier areas of Kazakhstan is considered.DOI: http://dx.doi.org/10.12731/2227-930X-2013-2-3Современные условия международной экономической интеграции обеспечить необходимость формирования системы физического распределения на основе логистических принципов. Обеспечение движения грузопотоков на макроуровне в отношении с для реализации международных стандартов логистического обслуживания требует разработки макрологистических взаимодействия. Объективно существующие формы взаимодействия макрологистических и их особенности описаны в статье, формы взаимодействия, которые могут быть реализованы в условиях приграничного сотрудничества определены. Авторы дают подход к выбору наиболее рациональной формы макрологистических взаимодействия для конкретных экономических условиях. В качестве примера, взаимодействие Омской области и приграничных районов Казахстана считается
    corecore