231 research outputs found

    Investigations of Protective Coatings for Castings of High-manganese Cast Steels

    Get PDF
    When cast steel castings are made in moulding sands on matrices of high-silica sand, which has a low fire resistance the problem of theso-called chemical penetration is distinctly visible. Whereas this effect appears to a small degree only when moulding sand matrices are of chromite, zircon or olivine sands. Therefore in case of making castings of high-manganese cast steel (e.g. Hadfield steel) sands not containing free silica should be applied (e.g. olivine sand) or in case of a high-silica matrix protective coatings for moulds and cores should be used. Two protective coatings, magnesite alcoholic (marked as coating 1 and coating 2) originated from different producers and intended for moulds for castings of the Hadfield steel, were selected for investigations. Examinations of the basic properties were performed for these coatings: viscosity, thermal analysis, sedimentation properties, wear resistance. In order to estimate the effectiveness of protective coatings the experimental castings were prepared. When applying coating 1, the surface quality of the casting was worse and traces of interaction between the casting material (cast steel) and the coating were seen. When protective coating 2 was used none interactions were seen and the surface quality was better

    Characterization of doping levels in heteronuclear, gas-phase, van der Waals clusters and their energy absorption from an intense optical field

    Get PDF
    A simple mass spectrometric method has been developed to quantify dopant levels in heteronuclear clusters in the gas phase. The method is demonstrated with reference to quantification of the water content in supersonic beams of water-doped argon clusters. Such doped clusters have assumed much importance in the context of recently-reported doping-induced enhancement in the emission of energetic charged particles and photons upon their interaction with intense laser pulses. We have also measured the energy that a doped cluster absorbs from the optical field; we find that energy absorption increases with increasing level of doping. The oft-used linear model of energy absorption is found to be quantitatively inadequate.Comment: To appear in Chemical Physics Letter

    Characterization of cytosolic proliferating cell nuclear antigen (PCNA) in neutrophils: antiapoptotic role of the monomer.

    Get PDF
    We have shown previously that PCNA, a nuclear factor involved in DNA replication and repair in proliferating cells, is localized exclusively in the cytoplasm of neutrophils, where it regulates their survival. Nuclear PCNA functions are tightly linked to its ring-shaped structure, which allows PCNA to bind to numerous partner proteins to orchestrate DNA-related processes. We have shown that only monomeric PCNA can expose its NES to be relocalized from nucleus to cytosol during granulocyte differentiation. This study tested the hypothesis that monomeric PCNA could have a biological role in neutrophils. With the use of a combination of cross-linking and gel-filtration experiments, trimeric and monomeric PCNAs were detected in neutrophil cytosol. The promyelocytic cell line PLB985 was next stably transfected to express the monomeric PCNAY114A mutant to examine its function compared with the WT trimeric PCNA. Monomeric PCNAY114A mutant potentiated DMF-induced differentiation, as evidenced by an increased percentage of CD11b- and gp91phox-positive PLB985PCNAY114A cells and by an increased, opsonized zymosan-triggered NADPH oxidase activity compared with PLB985PCNA or PLB985 cells overexpressing WT PCNA or the empty plasmid, respectively. Regarding antiapoptotic activity, DMF-differentiated PLB985 cells overexpressing WT or the monomeric PCNAY114A mutant displayed a similar antiapoptotic activity following treatment with gliotoxin or TRAIL compared with PLB985. The molecular basis through which cytoplasmic PCNA exerts its antiapoptotic activity in mature neutrophils may, at least in part, be independent of the trimeric conformation

    21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    Get PDF
    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}

    Modelling and Analysis of Central Metabolism Operating Regulatory Interactions in Salt Stress Conditions in a L-Carnitine Overproducing E. coli Strain

    Get PDF
    Based on experimental data from E. coli cultures, we have devised a mathematical model in the GMA-power law formalism that describes the central and L-carnitine metabolism in and between two steady states, non-osmotic and hyperosmotic (0.3 M NaCl). A key feature of this model is the introduction of type of kinetic order, the osmotic stress kinetic orders (gOSn), derived from the power law general formalism, which represent the effect of osmotic stress in each metabolic process of the model
    • …
    corecore