26 research outputs found

    Development of advanced control strategies for Adaptive Optics systems

    Get PDF
    Atmospheric turbulence is a fast disturbance that requires high control frequency. At the same time, celestial objects are faint sources of light and thus WFSs often work in a low photon count regime. These two conditions require a trade-off between high closed-loop control frequency to improve the disturbance rejection performance, and large WFS exposure time to gather enough photons for the integrated signal to increase the Signal-to-Noise ratio (SNR), making the control a delicate yet fundamental aspect for AO systems. The AO plant and atmospheric turbulence were formalized as state-space linear time-invariant systems. The full AO system model is the ground upon which a model-based control can be designed. A Shack-Hartmann wavefront sensor was used to measure the horizontal atmospheric turbulence. The experimental measurements yielded to the Cn2 atmospheric structure parameter, which is key to describe the turbulence statistics, and the Zernike terms time-series. Experimental validation shows that the centroid extraction algorithm implemented on the Jetson GPU outperforms (i.e. is faster) than the CPU implementation on the same hardware. In fact, due to the construction of the Shack-Hartmann wavefront sensor, the intensity image captured from its camera is partitioned into several sub-images, each related to a point of the incoming wavefront. Such sub-images are independent each-other and can be computed concurrently. The AO model is exploited to automatically design an advanced linear-quadratic Gaussian controller with integral action. Experimental evidence shows that the system augmentation approach outperforms the simple integrator and the integrator filtered with the Kalman predictor, and that it requires less parameters to tune

    Efficient implementation of the Shack-Hartmann centroid extraction for edge computing

    Get PDF
    Adaptive optics (AO) is an established technique to measure and compensate for optical aberrations. One of its key components is the wavefront sensor (WFS), which is typically a Shack-Hartmann sensor (SH) capturing an image related to the aberrated wavefront. We propose an efficient implementation of the SH-WFS centroid extraction algorithm, tailored for edge computing. In the edge-computing paradigm, the data are elaborated close to the source (i.e., at the edge) through low-power embedded architectures, in which CPU computing elements are combined with heterogeneous accelerators (e.g., CPUs, field-programmable gate arrays). Since the control loop latency must be minimized to compensate for the wavefront aberration temporal dynamics, we propose an optimized algorithm that takes advantage of the unified CPU/GPU memory of recent low-power embedded architectures. Experimental results show that the centroid extraction latency obtained over spot images up to 700 x 700 pixels wide is smaller than 2 ms. Therefore, our approach meets the temporal requirements of small- to medium-sized AO systems, which are equipped with deformable mirrors having tens of actuators. (C) 2020 Optical Society of Americ

    Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction

    Get PDF
    Adaptive Optics (AO) is required to achieve diffraction limited resolution in many real-life imaging applications in biology and medicine. AO is essential to guarantee high fidelity visualization of cellular structures for retinal imaging by correcting ocular aberrations. Aberration correction for mouse retinal imaging by direct wavefront measurement has been demonstrated with great success. However, for mouse eyes, the performance of the wavefront sensor (WFS) based AO can be limited by several factors including non-common path errors, wavefront reconstruction errors. and an ill-defined reference plane. Image-based AO can avoid these issues at the cost of algorithmic execution time. Furthermore, image-based approaches can provide improvements to compactness, accessibility, and even the performance of AO systems. Here, we demonstrate the ability of image-based AO to provide comparable aberration correction and image resolution to the conventional Shack-Hartmann WFS-based AO approach. The residual wavefront error of the mouse eye was monitored during a wavefront sensorless optimization to allow comparison with classical AO. This also allowed us to improve the performance of our AO system for small animal retinal imaging. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations

    Get PDF
    For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system's optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses

    Fast stabilization of a high-energy ultrafast OPA with adaptive lenses

    Get PDF
    The use of fast closed-loop adaptive optics has improved the performance of optical systems since its first application. Here we demonstrate the amplitude and carrier-envelope phase stabilization of a high energy IR optical parametric amplifier devoted to Attosecond Science exploiting two high speed adaptive optical systems for the correction of static and dynamic instabilities. The exploitation of multi actuator adaptive lenses allowed for a minimal impact on the optical setup

    Electron and ion spectroscopy of Azobenzene in the valence and core shells

    Get PDF
    Azobenzene is a prototype and building block of a class of molecules of extreme technological interest as molecularphoto-switches. We present a joint experimental and theoretical study of its response to irradiation with light across theUV to X-ray spectrum. The study of valence and inner shell photo-ionization and excitation processes, combined withmeasurement of valence photoelectron-photoion coincidence (PEPICO) and of mass spectra across the core thresholdsprovides a detailed insight onto the site- and state-selected photo-induced processes. Photo-ionization and excita-tion measurements are interpreted via the multi-configurational restricted active space self-consistent field (RASSCF)method corrected by second order perturbation theory (RASPT2). Using static modelling, we demonstrate that thecarbon and nitrogen K edges of Azobenzene are suitable candidates for exploring its photoinduced dynamics thanks tothe transient signals appearing in background-free regions of the NEXAFS and XP

    Fault model qualification by assertion mining

    No full text
    The process of measuring the quality of a fault model is a key ingredient for implementing effective verifica- tion/testing phases based on fault injection. Most of the existing approaches for the qualification of a fault model base their evaluation on the comparison of the achieved fault coverage against other code coverage metrics, or against the fault coverage achieved by different fault models, sometimes at the varying of the abstraction level. However, these approaches do not explicitly provide a measure of the accuracy of the fault injection with respect to the actual functional behaviours implemented in the design under verification/testing (DUV/T). Thus, the achievement of 100% fault coverage does not necessarily imply that all the design\u2019s behaviours have been accurately perturbed by the selected fault model. To provide a more accurate evaluation of fault models, this paper proposes a methodology based on assertion mining, i.e., automatic extraction of temporal assertions from the simulation of the DUV/T. Mined assertions are then used to highlight behaviours of the DUV/T that are not accurately perturbed by the selected fault model

    Development of a CPU-based architecture for high performance adaptive optics systems

    No full text
    A basic Adaptive Optics setup is composed of three key elements: a wavefront sensor to detect the aberrations; a deformable mirror to correct such aberrations; and a closed loop control system connecting both sensor and deformable mirror in order to reduce the aberrations. The control system can be realized by the use of a dedicated platform such as an FPGA or GPU, because dedicated hardware can guarantee higher performances than software written for generic architecture such as CPU [1][2]. On the other hand, such solutions need more development time and hardware than a CPU-based approach, thus being more expensive both towards the developer and the end user. Moreover they are not flexible, operating on a strict selection of hardware. The proposed solution aims to becost-effective adaptive optics setup. It is a CPU-based approach that relies on Qt, which is a cross-platform application, and UI framework [3]. By using Qt Creator, an IDE specifically designed to work with Qt, the development effort is greatly reduced:natively manages both code and GUI, and, given the required toolchains, it can be easily compiled in many different platforms, without source differentiation. The source written and compiled in C++ language, so that it runs fast with minimum overhead from the Qt classes. We demonstrate that the system can operate in real time at more than 100Hz frequency

    Shack-Hartmann wavefront reconstructor for low-cost AO systems using power-efficient GPU

    No full text
    We propose a SH-WFS centroids extraction algorithm tailored for the NVidia Jetson TX2, a compact, power-efficient ARM computer in which system and GPU memory is shared, thus eliminating the data transfer overhead. Preliminary testing on the implementation show a total elapsed time of 700us from the acquisition of a 500x500 pixels image to extraction of 18x18 centroids, which is within the specifications for an AO closed-loop frequency up to 1kHz and hence ready to be implemented in an AO controller
    corecore