1,725 research outputs found

    Spectral selectivity in capillary dye lasers

    Full text link
    We explore the spectral properties of a capillary dye laser in the highly multimode regime. Our experiments indicate that the spectral behavior of the laser does not conform with a simple Fabry-Perot analysis; rather, it is strongly dictated by a Vernier resonant mechanism involving multiple modes, which propagate with different group velocities. The laser operates over a very broad spectral range and the Vernier effect gives rise to a free spectral range which is orders of magnitude larger than that expected from a simple Fabry-Perot mechanism. The presented theoretical calculations confirm the experimental results. Propagating modes of the capillary fiber are calculated using the finite element method (FEM) and it is shown that the optical pathlengths resulting from simultaneous beatings of these modes are in close agreement with the optical pathlengths directly extracted from the Fourier Transform of the experimentally measured laser emission spectra

    Optical alignment of oval graphene flakes

    Full text link
    Patterned graphene, as an atomically thin layer, supports localized surface plasmon-polaritons (LSPPs) at mid-infrared or far-infrared frequencies. This provides a pronounced optical force/torque in addition to large optical cross sections and will make it an ideal candidate for optical manipulation. Here, we study the optical force and torque exerted by a linearly polarized plane wave on circular and oval graphene flakes. Whereas the torque vanishes for circular flakes, the finite torque allows rotating and orienting oval flakes relative to the electric field polarization. Depending on the wavelength, the alignment is either perpendicular or parallel. In our contribution, we rely on full-wave numerical simulation but also on an analytical model that treats the graphene flakes in dipole approximation. The presented results reveal a good level of control on the spatial alignment of graphene flakes subjected to far-infrared illumination.Comment: Copyright 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. Online abstract lin

    Quantitative gene expression of ERG9 in model Saccharomyces cerevisiae: Chamomile extract for human cancer treatment

    Get PDF
    Over expression of squalene synthase gene causes induction of growth tumour and reduction of apoptosis. This gene which is conserved between Saccharomyces cerevisiae yeast and humans, is named (ERG9). Aim: In this work, we studied the effect of Matricaria recutita extract on ERG9 gene (squalene synthase) expression in S.cerevisiae which was used as organism model in cancer therapy. Materials and Methods: S. cerevisiae was cultured in YPD medium plus 0,250, 1000 and 3000 µg/ml of Matricaria recutita extract and we evaluated the (ERG9) gene expression by Realtime RT-PCR method after 24 hours. Statistical analysis used: At least 3 independent experiments were done. Data were analyzed using One-way ANOVA and Dunnett’s test. A p-value of less than 0.01 was considered as significant. Results: We found that 250, 1000 and 3000 µg/ml of Matricaria recutita extract could reduce expression of ERG9 gene significantly (p<0.01). Interestingly, the expression of this gene was completely inhibited in 1000 and 3000 µg/ml concentrations. Conclusion: This study predicted that Matricaria recutita extract produced anti-cancer effects in humans, because it could inhibit the expression of an analogue key gene in this malignant disease. Further investigations should be made, to study its molecular mechanism of action at the mammal cell level

    Construction of Novel Phytochelatins by Overlap Oligonucleotides

    Full text link
    Synthetic phytochelatins are protein analogs of phytochelatin with similar heavy metal binding affinities that can be easily produced from a synthetic DNA template. We design synthetic phytochelatin [(Glu-Cys)n Gly] linked to hexahistidine by viral linker peptide and then followed by gene synthesis and cloning of it. Then peptide coding gene (synthetic phytochelatin with linker and hexahistidine) was designed exactly and constructed with step by step methods by overlapping oligonucleotides using T4 DNA Ligase. Finally, synthesized gene amplified by PCR, cloned in pTZ57R/T and transformed to Escherichia coli (DH5α). The results of sequencing show that some types of synthetic phytochelatin (EC4, EC12, and EC20) with linker and hexahistidine were constructed and cloned in vector

    Antiproliferative effects of <em>Matricaria chamomilla on Saccharomyces cerevisiae</em>

    Get PDF
    Introduction: The Matricaria chamomilla plant is one of the most important plants used for the therapeutic purposes. More than 120 chemical constituents have been identified in Matricaria chamomile plant including 28 terpenoids and 36 flavonoids. This plant has a variety of therapeutic applications including the treatment of diabetes, eczema, wounds and gastrointestinal diseases. The Saccharomyces cerevisiae yeast is a non-pathogenic organism that is used as a model for pathogenic yeasts in order to identify compounds with antifungal properties and also to identify functional mechanism of these compounds. The aim of this study is to investigate the antifungal effect of Matricaria chamomilla hydroalcoholic extract on S. cerevisiae yeast. Methods: In this study Matricaria chamomilla extract was prepared by maceration method. In order to study the extract effect on growth and survival rate of the yeast cell, the spectrophotometry and methylene blue staining methods were used. Excel and SPSS 11 softwares were used to determine amounts and to infer the difference between control and treatment samples. Results: Results obtained from spectrophotometry and analyses of methylene blue staining showed that the Matricaria chamomilla extract at the concentration of 3000 &mu;g/ml caused a significant decrease in the yeast growth and reduced the cells survival rate up to 48 (p&lt; 0.05). Conclusion: Results of this research confirm that the hydroalcoholic extract of Matricaria chamomilla has antiproliferative effect on Saccharomyces cerevisiae. </p
    corecore