609 research outputs found

    Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions

    Get PDF
    This paper deals with an experimental study of the survivability of the offshore combined concept Semisubmersible wind energy and Flap-type wave energy Converter (SFC) and with comparisons of the experimental data with numerical predictions. The SFC is a combined energy concept consisting of a braceless semisubmersible type floating wind turbine and three fully submerged rotating flap-type Wave Energy Converters (WECs). In order to study the survivability of the concept the focus is on extreme environmental conditions. In these conditions the SFC will not produce wind or wave power; the wind turbine is parked with the blades feathered into the wind and the WECs are released to freely rotate about their axis of rotation. Firstly the development and set-up of the physical model are presented. Static, quasi-static, decay, regular waves and irregular waves with wind loading tests are conducted on an 1:50 scale physical model. Aligned and oblique wave with wind loading conditions are considered. Measured variables that are presented include motions of the semisubmersible platform in six rigid body degrees of freedom, rotation of the flap-type WECs, tension of mooring lines, internal loads of the arms that connect the flap with the pontoon of the platform and tower base bending moment. The experimental data are compared with numerical predictions obtained by a fully coupled numerical model. The comparison is made at model scale. A good agreement between experimental data and numerical predictions is observed confirming the accuracy of the numerical models and tools that are used. The discrepancy between numerical and experimental results is smaller for regular than irregular waves. Compared to oblique conditions a better agreement between experimental and numerical results is obtained for the case of aligned wave and wind loadings. The results obtained demonstrate the good performance of the SFC concept in extreme environmental conditions. No strong nonlinear hydrodynamic phenomena are observed in the tests

    Response Analysis and Comparison of a Spar-Type Floating Offshore Wind Turbine and an Onshore Wind Turbine under Blade Pitch Controller Faults

    Get PDF
    This paper analyses the effects of three pitch controller faults on the responses of an onshore wind turbine and a spar-type offshore floating wind turbine. These faults include: a stuck blade pitch actuator, a fixed value fault and a bias fault of the blade pitch sensor. The faults are modeled in the controller dynamic link library and a short-term extreme response analysis is performed using the HAWC2 simulation tool. The main objectives of this paper are to investigate how different faults affect the performance of wind turbines for condition monitoring purposes and which differences exist in the structural responses between onshore and offshore floating wind turbines. Statistical analysis of the selected response parameters are conducted using the six 1-hour stochastic samples for each load case. For condition monitoring purpose, the effects of faults on the responses at different wind speeds and fault amplitudes are investigated by comparing the same response under normal operation. The severities of the individual faults are categorized by the extreme values of structural loads and the structural components are sorted based on the magnitude of the fault effects on the extreme values. The pitch sensor fixed value fault is determined as the most severe fault case and the shaft appears as the structural component that experiences the highest risk. The effects of fault conditions on the offshore floating and the onshore wind turbines are compared to investigate the potential differences. The results show that faults cause more damage to the tower and the yaw bearing for the onshore wind turbine and more damage to the shaft for the offshore floating wind turbine

    Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    Get PDF
    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster. In addition to the traditional mechanical brake, a novel hydrodynamic brake was presented to apply to the shutdown case. The effects of the hydrodynamic brake on the platform motions and structural loads under normal operating conditions and during the emergency shutdown events were evaluated. The use of both the hydrodynamic brake and mechanical brake was also investigated. The application of the hydrodynamic brake is expected to be efficient for rotor shutdown and for reducing the platform motions and structural loads
    corecore