224 research outputs found

    S-wave eta'-proton FSI; phenomenological analysis of near-threshold production of pi0, eta, and eta' mesons in proton-proton collisions

    Full text link
    We describe a novel technique for comparing total cross sections for the reactions pp --> pp pi(0), pp --> pp eta, and pp --> pp eta' close to threshold. The initial and final state proton-proton interactions are factored out of the total cross section, and the dependence of this reduced cross section on the volume of phase space is discussed. Different models of the proton-proton interaction are compared. We argue that the scattering length of the S-wave eta'-proton interaction is of the order of 0.1 fm.Comment: 10 pages, 5 figure

    Strangeness production in proton-proton and proton-nucleus collisions

    Full text link
    In these lectures we discuss the investigation of the strange meson production in proton-proton (pppp) and in proton-nucleus (pApA) reactions within an effective Lagrangian model. The kaon production proceeds mainly via the excitations of NN^*(1650), NN^*(1710), and NN^*(1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon-proton final state interaction effects are quite important. Thus, these studies provide a check on the models of hyperon-nucleon interactions. The in-medium production of kaons show strong sensitivity to the self energies of the intermediate mesons.Comment: 16 pages, 9 figures, Talk presented in the workshop on Hadron Physics, Puri, India, March 7-17,200

    Excess Circulating Alternatively Activated Myeloid (M2) Cells Accelerate ALS Progression While Inhibiting Experimental Autoimmune Encephalomyelitis

    Get PDF
    Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/Low)HLA-DR(-)CD33(+)) compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage

    Evolutionary explanations in medical and health profession courses: are you answering your students' "why" questions?

    Get PDF
    BACKGROUND: Medical and pre-professional health students ask questions about human health that can be answered in two ways, by giving proximate and evolutionary explanations. Proximate explanations, most common in textbooks and classes, describe the immediate scientifically known biological mechanisms of anatomical characteristics or physiological processes. These explanations are necessary but insufficient. They can be complemented with evolutionary explanations that describe the evolutionary processes and principles that have resulted in human biology we study today. The main goal of the science of Darwinian Medicine is to investigate human disease, disorders, and medical complications from an evolutionary perspective. DISCUSSION: This paper contrasts the differences between these two types of explanations by describing principles of natural selection that underlie medical questions. Thus, why is human birth complicated? Why does sickle cell anemia exist? Why do we show symptoms like fever, diarrhea, and coughing when we have infection? Why do we suffer from ubiquitous age-related diseases like arteriosclerosis, Alzheimer's and others? Why are chronic diseases like type II diabetes and obesity so prevalent in modern society? Why hasn't natural selection eliminated the genes that cause common genetic diseases like hemochromatosis, cystic fibrosis, Tay sachs, PKU and others? SUMMARY: In giving students evolutionary explanations professors should underscore principles of natural selection, since these can be generalized for the analysis of many medical questions. From a research perspective, natural selection seems central to leading hypotheses of obesity and type II diabetes and might very well explain the occurrence of certain common genetic diseases like cystic fibrosis, hemochromatosis, Tay sachs, Fragile X syndrome, G6PD and others because of their compensating advantages. Furthermore, armed with evolutionary explanations, health care professionals can bring practical benefits to patients by treating their symptoms of infection more specifically and judiciously. They might also help curtail the evolutionary arms race between pathogens and antibiotic defenses

    Role of N*(1650) in the near threshold pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions

    Full text link
    We investigate the pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions at beam energies near their thresholds within an effective Lagrangian model, where the strangeness production proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic resonances. It is found that the NN^*(1650) resonance dominates both these reactions at near threshold energies. The contributions from this resonance together with the final state interaction among the outgoing particles are able to explain the observed beam energy dependence of the ratio of the cross sections of the two reactions in the near threshold region.Comment: Revised version, Fig. 4 is updated with the revised data, to appear in Phys. Rev. C (Rapid Communications

    Allotransplanted Neurons Used to Repair Peripheral Nerve Injury Do Not Elicit Overt Immunogenicity

    Get PDF
    A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG) cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ) in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05) while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001). Major histocompatibility complex I (MHC I) molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold standard of autologous nerve transplant

    SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stromal cell-derived factor-1 (SDF1) and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling.</p> <p>Methods</p> <p>These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice.</p> <p>Results</p> <p>In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST) as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI), the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells.</p> <p>Conclusions</p> <p>These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the SDF1 signaling system may be important for regulating the inflammatory response after SCI.</p
    corecore