736 research outputs found

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.Comment: 39 pages, 46 figures, 2 table

    Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids

    Get PDF
    Electrical conductivity is an important property for technological applications of nanofluids that has not been widely studied. Conventional descriptions such as the Maxwell model do not account for surface charge effects that play an important role in electrical conductivity, particularly at higher nanoparticle volume fractions. Here, we perform electrical characterizations of propylene glycol-based ZnO nanofluids with volume fractions as high as 7%, measuring up to a 100-fold increase in electrical conductivity over the base fluid. We observe a large increase in electrical conductivity with increasing volume fraction and decreasing particle size as well as a leveling off of the increase at high volume fractions. These experimental trends are shown to be consistent with an electrical conductivity model previously developed for colloidal suspensions in salt-free media. In particular, the leveling off of electrical conductivity at high volume fractions, which we attribute to counter-ion condensation, represents a significant departure from the "linear fit" models previously used to describe the electrical conductivity of nanofluids

    Galaxy Clustering in Early SDSS Redshift Data

    Get PDF
    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r < 10 Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and M_*+1.5 have real-space correlation functions that are parallel power laws of slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h, and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio

    Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms

    Get PDF
    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    18th IEEE Real-Time Systems Symposium: Work in Progress Sessions

    Full text link
    Dear Colleagues: Following, the success of last year's Work In Progress (WIP) Sessions during RTSS'96, I am pleased to continue that tradition by presenting you 10 excellent WIP reports for RTSS'97. The prime purpose of RTSS WIP sessions is to provide researchers in Academia and Industry an opportunity to discuss their evolving ideas and gather feedback thereon from the real-time community at large. There were 16 submissions for WIP presentations, of which 10 have been accepted for presentation during the symposium and for inclusion in RTSS'97 WIP proceedings. If you would like to reference any article included in the RTSS'97 WIP Proceedings, please note that theses proceedings are published as a Technical Report from Boston University, Computer Science Department (BUCS-TR-97- 021). Many people worked hard to make the idea of holding the WIP sessions a reality. In particular, I would like to thank Kwei-Jay Lin for accommodating the WIP sessions within the busy schedule of RTSS'97. Also, I would like to thank all members of the RTSS'97 Program Committee who helped me review these submissions. Finally, I would like to thank all those who submitted their work to RTSS'97 WIP Sessions. I hope these sessions will prove beneficial, both to the WIP presenters and to RTSS'97 attendees. Azer Bestavros RTSS'97 WIP Chair December 1997.IEEE-CS TC-RT

    The evolutionary history of the catenin gene family during metazoan evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120 based on the lack of sequence and structural similarity, and the alpha subfamily belongs to the vinculin superfamily. Catenins link the transmembrane protein cadherin to the cytoskeleton and thus function in cell-cell adhesion. To date, only the beta subfamily has been evolutionarily analyzed and experimentally studied for its functions in signaling pathways, development and human diseases such as cancer. We present a detailed evolutionary study of the whole catenin family to provide a better understanding of how this family has evolved in metazoans, and by extension, the evolution of cell-cell adhesion.</p> <p>Results</p> <p>All three catenin subfamilies have been detected in metazoans used in the present study by searching public databases and applying species-specific BLAST searches. Two monophyletic clades are formed between beta and p120 subfamilies using Bayesian phylogenetic inference. Phylogenetic analyses also reveal an array of duplication events throughout metazoan history. Furthermore, numerous annotation issues for the catenin family have been detected by our computational analyses.</p> <p>Conclusions</p> <p>Delta2/ARVCF catenin in the p120 subfamily, beta catenin in the beta subfamily, and alpha2 catenin in the alpha subfamily are present in all metazoans analyzed. This implies that the last common ancestor of metazoans had these three catenin subfamilies. However, not all members within each subfamily were detected in all metazoan species. Each subfamily has undergone duplications at different levels (species-specific, subphylum-specific or phylum-specific) and to different extents (in the case of the number of homologs). Extensive annotation problems have been resolved in each of the three catenin subfamilies. This resolution provides a more coherent description of catenin evolution.</p

    LC–MS-based absolute metabolite quantification:Application to metabolic flux measurement in trypanosomes

    Get PDF
    Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome’s metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC–MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E. coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism
    • …
    corecore