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Synopsis
We present a protocol for measurement of SNR profile of C RF coils for clinical imaging systems.

This protocol makes use of standard, vendor-provided pulse sequences as well as the natural
abundance CH  resonance of the dimethyl silicone (DMS)
phantoms which are widely distributed. We also provide an
open source code for processing and analysis.

Introduction
Quantitative comparison of the performance of MRI transmitters and receivers between sites is
critically important in establishing standards for performance, selecting appropriate coil geometry for
a given application, and verifying hardware reliability for clinical trials. Comparing C coils is
inherently difficult due to the lack of availability of standardized C phantoms, pulse sequences, and
data reconstruction and analysis tools. Furthermore, material costs for C – enriched compounds for
large volume phantoms is prohibitively expensive, and a consensus has not been reached for the
selection of the appropriate compound. Developing multi-site studies will be important in the evolution
of hyperpolarized C technology. We propose here a solution using standard pulse sequences and
MRI phantoms, that are widely available. The proposed QA protocol utilizes the natural abundance

CH  resonance of the dimethyl silicone (DMS) phantoms available as a QA phantom from some
vendors or easily prepared [1] (Figure 1). This phantom has a measured C T  of 899 ms at 3T by
saturation recovery, and C - H coupling constant is measured to be J=118Hz (Figure 1). Compared
to the commonly used natural abundance ethylene glycol CH  resonance for phantom calibration,
DMS resonates at 62 PPM lower frequency with approximately 50% less sensitivity. Pulse sequence
and parameters are discussed, and an open source data reconstruction framework is provided.

Methods
Pulse Sequence: The following list gives the relevant parameters of this acquisition protocol. Flip
angle calibration was performed manually by finding the null of the resonance using a 3 second TR. A
separate protocol was developed for head and torso array testing; this was to ensure that the pixel
volume compensated the reduced sensitivity of the larger coils, and to ensure that the FOV sufficiently
encompassed a noise region. A 2D phase-encoded, slice-selective spectroscopy sequence was
selected since the protocol resolved the spectral splitting without generating image blurring, and noise
and signal separation could be achieved by simple band selection in post processing.

FOV = 32 cm (head), 48 cm (torso)
acquisition size = 16 by 16
slice thickness = 2 cm (head), 3 cm (torso)
averages = 2
TR = 500 ms
flip angle = 22.5
bandwidth, samples = 5 kHz, 256

Data processing: Figure 2 shows a schematic of the processing pipeline. Since the A/D period is
spectroscopically resolved, signal and noise contributions may be differentiated via band selection. A
convenient method is peak selection using the Dietrich method, which relies on computing a
numerical derivative, converting to power spectrum, then iterative thresholding based on mean and
standard deviations. References [2,3] provide a detailed description of this method, and 1D erosion /
dilation morphology operations may be applied to clean up noise spikes. The integration of peaks
selected with this method provides maximally efficient signal usage while minimizing noise bias. Since
the noise statistics are calculated after performing a sum-of-squares operation, the standard deviation
must be corrected for the non-central chi distribution statistics that describe summing multiple
channels of Rician-distributed magnitude noise [4,5]. Source code, written in Octave, is openly
distributed at the following link [6].

Experiments: This protocol was applied at 3 different sites in
the US and Canada using GE 3T Signa systems (GE

1 2 3 3 4

5

1 2 3
4

5

13

13 3

13
13

13

13

13 3
13 1

13 1
13 2

13

Figures

Figure 1: a) the DMS phantom,
with ring loader, inside a H head
coil. b) the DMS molecular
structure. c) DMS natural
abundance C spectrum (J =
118 Hz). d) C saturation
recovery curve (T  = 899 ms)

Figure 2: the data processing
pipeline for SNR determination.
Data are split into separate signal
and noise processing paths
depending on their location in the
frequency band. The latter may
be selected manually or via peak
detection as given in this
example. Since sum-of squares
processing is used, the noise
distribution must be corrected for
channel count N

Figure 3: SNR maps generated at
3 different MRI facilities with the
protocol. The coil geometries
shown are quadrature transmit, 8
channel receive array (left),
quadrature birdcage transmit /
receive (center), and clamshell
Helmholtz transmit, 8 channel
paddle array receive (right).
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Healthcare, Waukesha WI) using 3 different C array
geometries: 8 channel receive array, quadrature birdcage
transmit / receive, and clamshell Helmholtz transmit, 8 channel
paddle array receive.

Results
Figure 3 shows 3 sample images acquired with this protocol on the head-sized phantom. In each
case, a clear profile of the in-plane SNR behavior of the coil could be achieved, with regions of
SNR>50, and scan times under 5 minutes. Figure 3a and 3b show data from an 8 channel receive
array and birdcage, respectively. The brightening of the posterior array elements indicates the
phantom was more proximal to the posterior side, while the birdcage has smaller inner diameter and
thus more even SNR throughout the volume.

Discussion / Conclusion
We present a standardized calibration procedure for receive arrays using readily available phantoms
and pulse sequences and using open source data processing. Limitations of this protocol include the
inherent difficulty in transmit gain determination and lack of robust automated prescan, which
obviously may lead to systematic bias of SNR measurements. The effect of coil loading on SNR
measurements must be explored further. Although the DMS phantoms are impervious to standing
wave effects at high field [1], they are not, by default, loaded and are typically used in conjunction with
a cylindrical loading ring (Figure 1). This ring is compatible with most 13C torso arrays, but the smaller
head-sized loader is not mechanically compatible with many head arrays. Further study is required to
test the adequacy of saline bags for this purpose.
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