6,039 research outputs found

    Data Acquisition in the EUDET Project

    Get PDF
    The goal of the EUDET project is the development and construction of infrastructure to permit detector R&D for the International Linear Collider (ILC) with larger scale prototypes. It encompasses major detector components: the vertex detector, the tracker and the calorimeters. We describe here the status and plans of the project with emphasis on issues related to data acquisition for future test beam experiments.Comment: 4 pages, 2 figures, to appear in the proceedings of Linear Collider Workshop (LCWS06), Bangalore, Indi

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    The TESLA Time Projection Chamber

    Get PDF
    A large Time Projection Chamber is proposed as part of the tracking system for a detector at the TESLA electron positron linear collider. Different ongoing R&D studies are reviewed, stressing progress made on a new type readout technique based on Micro-Pattern Gas Detectors.Comment: 5 pages, 8 figures; Proceeding for the topical Seminar on Innovative Particle and Radiation Detectors Siena, 21-24 October 2002; to appear in Nucl.Phys. B (Proceedings Supplement

    Basic Study of Synchronization in a Two Degree of Freedom, Duffing Based System

    Get PDF
    The issue of synchronization has been analyzed from many points of view since it was first described in 17th century. Nowadays the theory that stands behind it is so developed, it might be difficult to understand where it all comes from. This paper reminds the key concepts of synchronization by examination of two coupled Duffing oscillators. It describes also the origins of Duffing equation and proves its ability to behave chaotically

    Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks

    Get PDF
    Phylogenetic networks provide a way to describe and visualize evolutionary histories that have undergone so-called reticulate evolutionary events such as recombination, hybridization or horizontal gene transfer. The level k of a network determines how non-treelike the evolution can be, with level-0 networks being trees. We study the problem of constructing level-k phylogenetic networks from triplets, i.e. phylogenetic trees for three leaves (taxa). We give, for each k, a level-k network that is uniquely defined by its triplets. We demonstrate the applicability of this result by using it to prove that (1) for all k of at least one it is NP-hard to construct a level-k network consistent with all input triplets, and (2) for all k it is NP-hard to construct a level-k network consistent with a maximum number of input triplets, even when the input is dense. As a response to this intractability we give an exact algorithm for constructing level-1 networks consistent with a maximum number of input triplets

    On Routing Disjoint Paths in Bounded Treewidth Graphs

    Get PDF
    We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph GG and a collection of kk source-destination pairs M={(s1,t1),,(sk,tk)}\mathcal{M} = \{(s_1, t_1), \dots, (s_k, t_k)\}. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset M\mathcal{M}' of the pairs is a collection P\mathcal{P} of paths such that, for each pair (si,ti)M(s_i, t_i) \in \mathcal{M}', there is a path in P\mathcal{P} connecting sis_i to tit_i. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph GG has capacities cap(e)\mathrm{cap}(e) on the edges and a routing P\mathcal{P} is feasible if each edge ee is in at most cap(e)\mathrm{cap}(e) of the paths of P\mathcal{P}. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an O(r3)O(r^3) approximation for MaxEDP on graphs of treewidth at most rr and a matching approximation for MaxNDP on graphs of pathwidth at most rr. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an O(r3r)O(r \cdot 3^r) approximation for MaxEDP
    corecore