20 research outputs found

    Silicon carbide diode for increased light output

    Get PDF
    Transition metals improve the overall light output and the output in particular regions of the electroluminescent of a silicon carbide semiconductor device. These metals /impurities/ introduce levels that can be pumped electrically and affect the efficiency of the recombination process involved in emission of radiation

    Thick film silicon growth techniques

    Get PDF
    Thick film silicon ribbons were produced by means of the edge-defined, film-fed growth (EFG) technique. EFG is a process by which single crystals may be grown having a shape controlled by the outside dimensions of a die, the growth taking place from an extremely thin film of liquid fed by capillary action from a crucible below. The principal problem to be overcome in the application of this process to the growth of thick film silicon ribbon relates to the material, such as the shaping die. For the method to operate, this die material must be wet by the liquid silicon. To preserve semiconductor quality, the liquid silicon must not react significantly with the die material. The most promising die material for this application appears to be SiC and SiC-SiO2 admixture. In this case good wetting occurs between the molten silicon and the SiC. C is a relatively unharmful contaminant of Si and additions of quartz to SiC are found to decrease the extent of reaction

    Thick silicon growth techniques

    Get PDF
    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies

    Thick film silicon growth techniques

    Get PDF
    Silicon ribbon growth experiments were conducted using orifices (dies) fabricated from SiC-SiO2 mixtures, fused quartz, SiC, and fine-grained, high density graphite. The best results were obtained from graphite dies. A number of different approaches was tried in modifying the thermal gradient in the dies and in holding the dies. The best results here were obtained from a 0.25-in. thick Mo disc holding a graphite die directly and fitting the die quite closely. Ribbon growths as wide as 9 mm were obtained, while the longest ribbon was 450 x 3.5 x 0.5 mm. Resistivities of ribbons grown from graphite dies have been measured over the range of 0.03 to 1.6 ohm-cm. Some thoughts and literature findings are presented regarding refractory oxide materials as potential orifices

    Thick film silicon growth techniques

    Get PDF
    One inch wide silicon ribbons up to 14 inches long have been produced from graphite dies. Several different techniques have been employed to improve the semiconductor purity of silicon. This has resulted in a general increase in quality although the techniques involved have not been optimized. The power factor of uncoated ribbon solar cells produced for material evaluation has increased to approximately 75% of those evaluation cells made from commercial silicon. The present limitation is believed due to low lifetime. Additional work has continued with new die materials; however, only composite dies of SiO2 and C show significant potential at this time

    Thick film silicon growth techniques

    Get PDF
    The research which was directed toward finding an improved die material is reported. Wetting experiments were conducted with various materials to determine their compatibility with silicon. Work has also continued toward the development of quartz as a die material as new techniques have provided more optimistic results than observed in the past. As a result of the thermal modification previously described, improvements in growth stability have contributed to an increase in ribbon quality

    Measurement of thermal conductivity at high temperatures

    No full text
    corecore