6 research outputs found

    The Libyan civil conflict : selected case series of orthopaedic trauma managed in Malta in 2014

    Get PDF
    Aim: The purpose of this series of cases was to analyse our management of orthopaedic trauma casualties in the Libyan civil war crisis in the European summer of 2014. We looked at both damage control orthopaedics and for case variety of war trauma at a civilian hospital. Due to our geographical proximity to Libya, Malta was the closest European tertiary referral centre. Having only one Level 1 trauma care hospital in our country, our Trauma and Orthopaedics department played a pivotal role in the management of Libyan battlefield injuries. Our aims were to assess acute outcomes and short term mortality of surgery within the perspective of a damage control orthopaedic strategy whereby aggressive wound management, early fixation using relative stability principles, antibiotic cover with adequate soft tissue cover are paramount. We also aim to describe the variety of war injuries we came across, with a goal for future improvement in regards to service providing.Methods: Prospective collection of six interesting cases with severe limb and spinal injuries sustained in Libya during the Libyan civil war between June and November 2014.Conclusions: We applied current trends in the treatment of war injuries, specifically in damage control orthopaedic strategy and converting to definitive treatment where permissible. The majority of our cases were classified as most severe (Type IIIB/C) according to the Gustilo-Anderson classification of open fractures. The injuries treated reflected the type of standard and improved weaponry available in modern warfare affecting both militants and civilians alike with increasing severity and extent of damage. Due to this fact, multidisciplinary team approach to patient centred care was utilised with an ultimate aim of swift recovery and early mobilisation. It also highlighted the difficulties and complex issues required on a hospital management level as a neighbouring country to war zone countries in transforming care of civil trauma to military trauma.peer-reviewe

    Strategies for the use of Data and Algorithmic Approaches in Railway Traffic Management

    Get PDF
    A Railway Traffic Management problem can be defined as forecasting fu- ture progression of trains, identifying conflicts where two or more trains compete for available infrastructure, investigating options for resolution of conflicts, re-planning train schedules to minimise the impact on sy- stem performance. Performance management of complex networks is a problem common to a number of industries and applications. There has been much work over many decades on modelling the generation and optimisation of railway timetables. Much of this focuses on relatively simple railways and services and is therefore quite straightforward. Main line railways have a number of features that introduce significant com- plexity. Traditionally the problem of re-planning a timetable in near real time to manage and recover from service perturbations and disruption is simplified to help arrive at a solution in an acceptable amount of time, but this then can have unintended consequences which can amplify rat- her than reduce the disruption in the network. Resonate are interested in looking at different strategies / models / techniques for dealing with the problem, the likely strengths and risks of these, and how they might be adapted to improve existing solutions. The study group participants undertook a brief survey of recent literature on modelling train delays and found machine learning approaches, network models and a statisti- cal approach to defining the efficiency of a station in dissipating delays which are worthy of further consideration. We then explored total of nine modelling approaches during the study group. The approaches fell broadly into two groups: those that sought to understand the pro- pagation of delays (Approaches 1 to 6) and those that sought to offer strategies for minimising delays (Approaches 8 and 9). Approach 7 pro- poses a way of understanding the propagation of delays and using that to evaluate candidate policy decisions. There are a number of promising approaches here which provide useful lines of enquiry, many suitable for expansion beyond the simple railways modelled, to include variable train speeds, junctions and intersections, temporal differences in usage, such as tidal flows in and out of cities, and resource constraints

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore