228 research outputs found

    Random product of substitutions with the same incidence matrix

    Full text link
    Any infinite sequence of substitutions with the same matrix of the Pisot type defines a symbolic dynamical system which is minimal. We prove that, to any such sequence, we can associate a compact set (Rauzy fractal) by projection of the stepped line associated with an element of the symbolic system on the contracting space of the matrix. We show that this Rauzy fractal depends continuously on the sequence of substitutions, and investigate some of its properties; in some cases, this construction gives a geometric model for the symbolic dynamical system

    Comprehensive cell manufacturing system based on flexible modular platform 85

    Get PDF
    In cell manufacturing, as it is known that the serial processes influence the quality of the cells, the processes in appropriate cell processing facility (CPF) is expected not only to maintain an aseptic environment but also to lead to stable processing. “Design for manufacturability (DFM)” is known to be the general engineering art of designing products in such a way that they are easy to manufacture. This concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology. DFM for cell production will lead to facilitation of the consistency and robustness for process as well as reduction cost for the cell manufacturing. As shown in Fig. 1, the system consists of input and output for the process. There are several fluctuations derived from extrinsic noises (environmental errors) against the system, input quality such as starter cells and materials (medium, reagents, vessel and pipet etc.), and intrinsic disorders (in-process errors). Especially, intrinsic disorders cause the difficulty to make consistency and robust process for stable quality because the cells have uncertainty accompanied by time-dependent and time-delay properties. Therefore, environmental, material, and operational standardizations are required to realize consistent process. A novel design of manufacturing facility has been proposed based on the isolator technology (Fig.2). Our proposal system is the flexible modular platform (fMP) which realize that the individual aseptic modules can connect and disconnect between modules (or pods) flexibly with keeping the aseptic environment in each module (or pods), leading to the compactness of aseptic processing area and quick change-over for multi-purposes and patients. To effectively implement this fMP technology, an interface that can be aseptically detached and attached from one module to another is required, responding to diversified requirements for cell processing. A common tool utilized in isolator based manufacturing of sterile pharmaceuticals is a transfer pod of rapid transfer ports (RTP). However, its interface limited to a circular configuration, and a more versatile aseptic transfer mechanism is sought for handling the connection between modules (or pods). Therefore, the interface of double door system is developed for the flexible connections between modules with shorten of the decontamination process. Furthermore, the standardization of the configuration suggests that the companies, who have novel modules with advanced technologies, lead to taking part in planning for further development of cell processing easily, compared to that in case of monopoly business by a certain company. Thus, our attempts are concluded to build an advanced culture system employing isolator technology, and the adaptation of the fMP in CPF will lead to easy installation of the new modules for production line addition and/or revision through the clinical phases as well as commercial production, which contributes to the reduction of production costs. Please click Additional Files below to see the full abstract

    The Effect of Military Load Carriage on Postural Sway, Forward Trunk Lean, and Pelvic Girdle Motion

    Get PDF
    International Journal of Exercise Science 10(1): 25-36, 2017. Musculoskeletal injuries are a common occurrence in military service members. It is believed that the load carried by the service member impedes stability and alters back and pelvis kinematics, increasing their susceptibility to musculoskeletal injuries, specifically in the lower extremities. The purpose of this study was to examine the effects of two different loads on postural sway, forward trunk lean, and pelvic girdle motion in United States Army Cadets. Twenty male Army Reserve Officers’ Training Corps Cadets participated in this study. Each participant performed the Modified Clinical Testing of Sensory Interaction (mCTSIB) Protocol and the Unilateral Stance (ULS) Protocol under three different rucksack load conditions (unloaded, 16.0 kg, and 20.5 kg loads). Mean postural sway velocity was recorded along with 2-D kinematics of the trunk in the sagittal plane and the pelvis in the frontal and sagittal planes. External loads of 16.0 kg (p \u3c 0.001) and 20.5 kg (p ≤ 0.003) significantly increased mean sway velocity by 16% to 52% depending on stance and visual condition, but did not produce significant changes in trunk and pelvic kinematics

    Development of a handy oil-skimmer

    Get PDF
    金沢大学大学院自然科学研究科環境創成金沢大学工学部Recently marine-pollution by high-viscous oil leaked from wrecked ships has been becoming a remarkable problem in the world. Japan government is renewing old oil recovery vessels with new concept. The oil recovery vessels are available on the open sea, but unworkable in a narrow space. We have developed a handy oil recovery system which is portable and used for supplementing the weak point of the oil recovery vessel. The system consists of a water jet oil-skimmer and a gravity oil/water separator. The oil skimmer has a high-pressure water jet pump inside the suction mouth and a long shaft which is used as a conduit of the recovered fluid as well as a spring-hanging device which enables an operator to easily manipulate it from the deck of the ship. After 3-year research and experiments, we have completed the system successfully. The system will be soon installed on our oil recovery vessels. © 2004 IEEE

    An emissive charge-transfer excited-state at the well-defined hetero-nanostructure interface of an organic conjugated molecule and two-dimensional inorganic nanosheet

    Get PDF
    Precise engineering of excited-state interactions between an organic conjugated molecule and a two-dimensional semiconducting inorganic nanosheet, specifically the manipulation of charge-transfer excited (CTE) states, still remains a challenge for state-of-the-art photochemistry. Herein, we report a long-lived, highly emissive CTE state at structurally well-defined hetero-nanostructure interfaces of photoactive pyrene and two-dimensional MoS2 nanosheets via an N-benzylsuccinimide bridge (Py-Bn-MoS2). Spectroscopic measurements reveal that no charge-transfer state is formed in the ground state, but the locally-excited (LE) state of pyrene in Py-Bn-MoS2 efficiently generates an unusual emissive CTE state. Theoretical studies elucidate the interaction of MoS2 vacant orbitals with the pyrene LE state to form a CTE state that shows a distinct solvent dependence of the emission energy. This is the first example of organic-inorganic 2D hetero-nanostructures displaying mixed luminescence properties by an accurate design of the bridge structure, and therefore represents an important step in their applications for energy conversion and optoelectronic devices and sensors

    Evaluation of the simulator with automatic irrigation control system designed for countermeasures of internal contamination in dental unit water lines

    Get PDF
    The prevention of nosocomial infections is an imperative task. The dental chair unit (DCU) is an indispensable device used in dental treatment. However, it is known that the dental unit water line (DUWL) can become contaminated with biofilm, consisting mainly of heterotrophic bacteria (HB). Recently, the International Organization for Standardization specified the methods for testing DUWL contamination management. On these grounds, a simulator reproducing DUWL was prepared to standardize the examination method of the DUWL contamination. Objectives To evaluate the reproducibility of the DUWL simulator, monitor the DUWL contamination states, and test the efficacy of a commercial decontaminant for DUWL. Methods The DUWL simulator was assembled by a DCU manufacturing company. The simulator's DUWL was filled with tap water (TW), and left for approximately one year. Neutral electrolyzed water (NEW) was used as a decontaminant for DUWL. Both TW and NEW were passed through DUWL in a timely manner simulating daily dental treatment. Water was sampled from the air turbine hand piece weekly for 4 weeks and used for HB culture. Contamination status was evaluated by measuring bacterial adenosine triphosphate release and by culturing on Reasoner's 2A medium. Results The DUWL released contaminated water had a bacterial count of over 6 × 104 cfu/mL. After passing NEW through DUWL for 1 week, the count drastically decreased to its basal level and remained steady for 4 weeks. However, TW showed no effect on DUWL decontamination throughout the examination periods. Conclusions The DUWL simulator could be useful to examine the efficacy of the decontaminant for DUWL and development of new methods in DUWL contamination management

    One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT)

    Get PDF
    Ohtsuka, M., Miura, H., Mochida, K. et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16, 274 (2015). https://doi.org/10.1186/s12864-015-1432-

    One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT)

    Get PDF
    Ohtsuka, M., Miura, H., Mochida, K. et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16, 274 (2015). https://doi.org/10.1186/s12864-015-1432-5Background: The pronuclear injection (PI) is the simplest and widely used method to generate transgenic (Tg) mice. Unfortunately, PI-based Tg mice show uncertain transgene expression due to random transgene insertion in the genome, usually with multiple copies. Thus, typically at least three or more Tg lines are produced by injecting over 200 zygotes and the best line/s among them are selected through laborious screening steps. Recently, we developed technologies using Cre-loxP system that allow targeted insertion of single-copy transgene into a predetermined locus through PI. We termed the method as PI-based Targeted Transgenesis (PITT). A similar method using PhiC31-attP/B system was reported subsequently. Results: Here, we developed an improved-PITT (i-PITT) method by combining Cre-loxP, PhiC31-attP/B and FLP-FRT systems directly under C57BL/6N inbred strain, unlike the mixed strain used in previous reports. The targeted Tg efficiency in the i-PITT typically ranged from 10 to 30%, with 47 and 62% in two of the sessions, which is by-far the best Tg rate reported. Furthermore, the system could generate multiple Tg mice simultaneously. We demonstrate that injection of up to three different Tg cassettes in a single injection session into as less as 181 zygotes resulted in production of all three separate Tg DNA containing targeted Tg mice. Conclusions: The i-PITT system offers several advantages compared to previous methods: multiplexing capability (i-PITT is the only targeted-transgenic method that is proven to generate multiple different transgenic lines simultaneously), very high efficiency of targeted-transgenesis (up to 62%), significantly reduces animal numbers in mouse-transgenesis and the system is developed under C57BL/6N strain, the most commonly used pure genetic background. Further, the i-PITT system is freely accessible to scientific community
    corecore