19 research outputs found
The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 eV to 10^17 eV observed with the Tibet-III air-shower array
We present an updated all-particle energy spectrum of primary cosmic rays in
a wide range from 10^14 eV to 10^17 eV using 5.5 times 10^7 events collected in
the period from 2000 November through 2004 October by the Tibet-III air-shower
array located at 4300 m above sea level (atmospheric depth of 606 g/cm^2). The
size spectrum exhibits a sharp knee at a corresponding primary energy around 4
PeV. This work uses increased statistics and new simulation calculations for
the analysis. We performed extensive Monte Carlo calculations and discuss the
model dependences involved in the final result assuming interaction models of
QGSJET01c and SIBYLL2.1 and primary composition models of heavy dominant (HD)
and proton dominant (PD) ones. Pure proton and pure iron primary models are
also examined as extreme cases. The detector simulation was also made to
improve the accuracy of determining the size of the air showers and the energy
of the primary particle. We confirmed that the all-particle energy spectra
obtained under various plausible model parameters are not significantly
different from each other as expected from the characteristics of the
experiment at the high altitude, where the air showers of the primary energy
around the knee reaches near maximum development and their features are
dominated by electromagnetic components leading to the weak dependence on the
interaction model or the primary mass. This is the highest-statistical and the
best systematics-controlled measurement covering the widest energy range around
the knee energy region.Comment: 19 pages, 20 figures, accepted by Ap
Protochlamydia belonging to environmental chlamydiae can survive in acanthamoebae following encystation
Whether endosymbionts can survive amoebal encystations remains a significant challenge in cellular biology. The survival of the endosymbiotic bacteria Protochlamydia belonging to environmental chlamydiae in acanthamoebae following encystation was therefore assessed. The bacteria were observed in cysts and the bacterial transcripts (16S rRNA and/or groEL) were also detected in amoeba cultures following encystation. Furthermore, the bacterial replication and the growth was confirmed in trophozoites reverted from cysts. Thus, these results demonstrated that Protochlamydia could survive in acanthamoebae following encystation. Our findings suggest that amoeba cysts might be further studied in order to elucidate the their role in the environmental survival of endosymbionts
Survival and transfer ability of phylogenetically diverse bacterial endosymbionts in environmental Acanthamoeba isolates
Obligate intracellular bacteria are commonly found as endosymbionts of acanthamoebae, however, their survival in and ability to transfer to amoebae are currently uncharacterized. In this study, six bacterial endosymbionts, found in five environmental Acanthamoeba isolates (S13, R18, S23, S31, S40) from different locations of Sapporo city, Japan, were characterized. Phylogenetic analysis revealed that three-bacterial endosymbionts (eS31, eS40a, eS23) belonged to α- and β-Proteobacterium phyla and the remaining endosymbionts (eR18, eS13, eS40b) belonged to the Chlamydiales phylum. The Acanthamoeba isolate (S40) contained two phylogenetically different bacterial endosymbionts (eS40a, eS40b). Fluorescent in situ hybridization analysis showed that all bacterial endosymbionts were diffusely localized within amoebae. Transmission electron microscopy also showed that the endosymbionts were rod-shaped (eS31, eS40a, eS23) or sphere- or crescent-shaped (eR18, eS13, eS40b). No successful culture of these bacteria was achieved using conventional culture methods, but the viability of endosymbionts was confirmed by live/dead staining and RT-PCR methods. However, endosymbionts (except eR18) derived from original host cells lost the ability to be transferred to another amoeba strain (Acanthamoebae ATCC C3). Taken together, our data demonstrate that phylogenetically diverse bacterial endosymbionts found in amoebae are viable and maintain a stable interaction with amoebae
Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles
The mechanism underlying bacterial conjugation through protozoa was investigated. Kanamycin-resistant Escherichia coli SM10λ+ carrying pRT733 with TnphoA was used as donor bacteria and introduced by conjugation into ciprofloxacin-resistant E. coli clinical isolate recipient bacteria. Equal amounts of donor and recipient bacteria were mixed together in the presence or absence of protozoa (ciliates, free-living amoebae, myxamoebae) in Page's amoeba saline for 24 h. Transconjugants were selected with Luria Broth agar containing kanamycin and ciprofloxacin. The frequency of conjugation was estimated as the number of transconjugants for each recipient. Conjugation frequency in the presence of ciliates was estimated to be approximately 10^[-6], but in the absence of ciliates, or in the presence of other protozoa, it was approximately 10^[-8]. Conjugation also occurred in culture of ciliates at least 2 h after incubation. Successful conjugation was confirmed by polymerase chain reaction. Addition of cycloheximide or latrunculin B resulted in suppression of conjugation. Heat killing the ciliates or bacteria had no effect on conjugation frequency. Co-localization of green fluorescent protein-expressing E. coli and PKH67-vital stained E. coli was observed in the same ciliate vesicles, suggesting that both donor and recipient bacteria had accumulated in the same vesicle. In this study, the conjugation frequency of bacteria was found to be significantly higher in vesicles purified from ciliates than those in culture suspension. We conclude that ciliates rapidly enhance the conjugation of E. coli strains through bacterial accumulation in vesicles
Rhinoceros beetle horn development reveals deep parallels with dung beetles
Beetle horns are attractive models for studying the evolution of novel traits, as they display diverse shapes, sizes, and numbers among closely related species within the family Scarabaeidae. Horns radiated prolifically and independently in two distant subfamilies of scarabs, the dung beetles (Scarabaeinae), and the rhinoceros beetles (Dynastinae). However, current knowledge of the mechanisms underlying horn diversification remains limited to a single genus of dung beetles, Onthophagus. Here we unveil 11 horn formation genes in a rhinoceros beetle, Trypoxylus dichotomus. These 11 genes are mostly categorized as larval head- and appendage-patterning genes that also are involved in Onthophagus horn formation, suggesting the same suite of genes was recruited in each lineage during horn evolution. Although our RNAi analyses reveal interesting differences in the functions of a few of these genes, the overwhelming conclusion is that both head and thoracic horns develop similarly in Trypoxylus and Onthophagus, originating in the same developmental regions and deploying similar portions of appendage patterning networks during their growth. Our findings highlight deep parallels in the development of rhinoceros and dung beetle horns, suggesting either that both horn types arose in the common ancestor of all scarabs, a surprising reconstruction of horn evolution that would mean the majority of scarab species (~35,000) actively repress horn growth, or that parallel origins of these extravagant structures resulted from repeated co-option of the same underlying developmental processes