107 research outputs found

    Lifetime attributable risk of radiation-induced secondary cancer from proton beam therapy compared with that of intensity-modulated X-ray therapy in randomly sampled pediatric cancer patients

    Get PDF
    To investigate the amount that radiation-induced secondary cancer would be reduced by using proton beam therapy (PBT) in place of intensity-modulated X-ray therapy (IMXT) in pediatric patients, we analyzed lifetime attributable risk (LAR) as an in silico surrogate marker of the secondary cancer after these treatments. From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: (i) brain, head and neck, (ii) thoracic, (iii) abdominal, and (iv) whole craniospinal (WCNS) irradiation. IMXT was replanned using the same computed tomography and region of interest. Using the dose-volume histograms (DVHs) of PBT and IMXT, the LARs of Schneider et al. were calculated for the same patient. All the published dose-response models were tested for the organs at risk. Calculation of the LARs of PBT and IMXT based on the DVHs was feasible for all patients. The means +/- standard deviations of the cumulative LAR difference between PBT and IMXT for the four categories were (i) 1.02 +/- 0.52% (n = 7, P = 0.0021), (ii) 23.3 +/- 17.2% (n = 8, P = 0.0065), (iii) 16.6 +/- 19.9% (n = 8, P = 0.0497) and (iv) 50.0 +/- 21.1% (n = 3, P = 0.0274), respectively (one tailed t-test). The numbers needed to treat (NNT) were (i) 98.0, (ii) 4.3, (iii) 6.0 and (iv) 2.0 for WCNS, respectively. In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. Although a validation study is required, it is suggested that the LAR would be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques

    Results of Proton Beam Therapy without Concurrent Chemotherapy for Patients with Unresectable Stage III Non-small Cell Lung Cancer

    Get PDF
    Introduction:This study was performed retrospectively to evaluate the outcome of patients with stage III non-small cell lung cancer (NSCLC) after proton beam therapy (PBT) alone.Methods:The subjects were 57 patients with histologically confirmed NSCLC (stage IIIA/IIIB: 24/33) who received PBT without concurrent chemotherapy. The cohort included 32 cases of squamous cell carcinoma, 18 adenocarcinoma, and 7 non-small cell carcinoma. Lymph node metastases were N0 7, N1 5, N2 30, and N3 15. Planned total doses ranged from 50 to 84.5 GyE (median, 74 GyE).Results:Planned treatment was completed in 51 patients (89%). At the time of analysis, 20 patients were alive, and the median follow-up periods were 16.2 months for all patients and 22.2 months for survivors. The median overall survival period was 21.3 months (95% confidence interval: 14.2–28.4 months), and the 1- and 2-year overall survival rates were 65.5% (52.9–78.0%) and 39.4% (25.3–53.5%), respectively. Disease progression occurred in 38 patients, and the 1- and 2-year progression-free survival rates were 36.2% (23.1–49.4%) and 24.9% (12.7–37.2%), respectively. Local recurrence was observed in 13 patients, and the 1- and 2-year local control rates were 79.1% (66.8–91.3%) and 64.1% (47.5–80.7%), respectively. Grade ≥3 lung toxicity was seen in six patients, esophageal toxicity occurred at grade ⩽2, and there was no cardiac toxicity.Conclusion:The prognosis of patients with unresectable stage III NSCLC is poor without chemotherapy. Our data suggest that high-dose PBT is beneficial and tolerable for these patients

    Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is one of the most intractable cancers, so the development of novel therapeutics has been required to improve patient outcomes. Curcumin, a polyphenol from Curcuma longa, exhibits various health benefits including antitumor effects, but its clinical utility is limited because of low bioavailability. Theracurmin® (THC) is a highly bioavailable curcumin dispersed with colloidal submicron particles. Methods: We examined antitumor effects of THC on ESCC cells by cell viability assay, colony and spheroid formation assay, and xenograft models. To reveal its mechanisms, we investigated the levels of reactive oxygen species (ROS) and performed microarray gene expression analysis. According to those analyses, we focused on NQO1, which involved in the removal of ROS, and examined the effects of NQO1-knockdown or overexpression on THC treatment. Moreover, the therapeutic effect of THC and NQO1 inhibitor on ESCC patient-derived xenografts (PDX) was investigated. Results: THC caused cytotoxicity in ESCC cells, and suppressed the growth of xenografted tumors more efficiently than curcumin. THC increased ROS levels and activated the NRF2–NMRAL2P–NQO1 expressions. Inhibition of NQO1 in ESCC cells by shRNA or NQO1 inhibitor resulted in an increased sensitivity of cells to THC, whereas overexpression of NQO1 antagonized it. Notably, NQO1 inhibitor significantly enhanced the antitumor effects of THC in ESCC PDX tumors. Conclusions: These findings suggest the potential usefulness of THC and its combination with NQO1 inhibitor as a therapeutic option for ESCC

    HER2 G776S mutation promotes oncogenic potential in colorectal cancer cells when accompanied by loss of APC function

    Get PDF
    Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS-GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target

    Proton beam therapy with concurrent chemotherapy is feasible in children with newly diagnosed rhabdomyosarcoma

    Get PDF
    BACKGROUND: The optimal treatment for rhabdomyosarcoma (RMS) requires multidisciplinary treatment with chemotherapy, surgery, and radiotherapy. Surgery and radiotherapy are integral to the local control (LC) of RMS. However, postsurgical and radiotherapy-related complications could develop according to the local therapy and tumor location. In this study, we conducted a single-center analysis of the outcomes and toxicity of multidisciplinary treatment using proton beam therapy (PBT) for pediatric RMS. MATERIALS AND METHODS: RMS patients aged younger than 20 years whose RMS was newly diagnosed and who underwent PBT at University of Tsukuba Hospital (UTH) during the period from 2009 to 2019 were enrolled in this study. The patients’ clinical information was collected by retrospective medical record review. RESULTS: Forty-eight patients were included. The 3-year progression-free survival (PFS) and overall survival (OS) rates of all the patients were 68.8% and 94.2%, respectively. The 3-year PFS rates achieved with radical resection, conservative resection, and biopsy only were 65.3%, 83.3%, and 67.6%, respectively (p = 0.721). The 3-year LC rates achieved with radical resection, conservative resection, and biopsy only were 90.9%, 83.3%, and 72.9%, respectively (p = 0.548). Grade 3 or higher mucositis/dermatitis occurred in 14 patients. Although the days of opioid use due to mucositis/dermatitis during the chemotherapy with PBT were longer than those during the chemotherapy without PBT [6.1 and 1.6 (mean), respectively, p = 0.001], the frequencies of fever and elevation of C-reactive protein were equivalent. CONCLUSIONS: Multidisciplinary therapy containing PBT was feasible and provided a relatively fair 3-year PFS, even in children with newly diagnosed RMS without severe toxicity

    Preliminary results of proton radiotherapy for pediatric rhabdomyosarcoma: a multi-institutional study in Japan

    Get PDF
    To evaluate preliminary results of proton radiotherapy (PRT) for pediatric patients with rhabdomyosarcoma (RMS). From 1987 to 2014, PRT was conducted as initial radiotherapy in 55 patients (35 males, 20 females, median age 5 years, range 0–19) with RMS at four institutes in Japan. Thirty‐one, 18, and six patients had embryonal, alveolar, and other RMS, respectively. One, 11, 37, and six patients were in IRSG groups I, II, III, and IV, respectively, and the COG risk group was low, intermediate, and high for nine, 39, and seven patients, respectively. The irradiation dose was 36–60 GyE (median: 50.4 GyE). The median follow‐up period was 24.5 months (range: 1.5–320.3). The 1‐ and 2‐year overall survival rates were 91.9% (95% CI: 84.3–99.5%) and 84.8% (95% CI 75.2–94.3%), respectively, and these rates were 100% and 100%, 97.1% and 90.1%, and 57.1% and 42.9% for COG low‐, intermediate‐, and high‐risk groups, respectively. There were 153 adverse events of Grade ≥3, including 141 hematologic toxicities in 48 patients (87%) and 12 radiation‐induced toxicities in nine patients (16%). Proton‐specific toxicity was not observed. PRT has the same treatment effect as photon radiotherapy with tolerable acute radiation‐induced toxicity

    Impact of neoadjuvant intensity-modulated radiation therapy on borderline resectable pancreatic cancer with arterial abutment; a prospective, open-label, phase II study in a single institution

    Get PDF
    BACKGROUND: Borderline resectable pancreatic cancer (BRPC) is a category of pancreatic cancer that is anatomically widely spread, and curative resection is uncommon with upfront surgery. Intensity-modulated radiation therapy (IMRT) is a form of radiation therapy that delivers precise radiation to a tumor while minimizing the dose to surrounding normal tissues. Here, we conducted a phase 2 study to estimate the curability and efficacy of neoadjuvant chemoradiotherapy using IMRT (NACIMRT) for patients with BRPC with arterial abutment (BRPC-A). METHODS: A total of 49 BRPC-A patients were enrolled in this study and were treated at our hospital according to the study protocol between June 2013 and March 2021. The primary endpoint was microscopically margin-negative resection (R0) rates and we subsequently analyzed safety, histological effect of the treatment as well as survivals among patients with NACIMRT. RESULTS: Twenty-nine patients (59.2%) received pancreatectomy after NACIMRT. The R0 rate in resection patients was 93.1% and that in the whole cohort was 55.1%. No mortality was encountered. Local therapeutic effects as assessed by Evans classification showed good therapeutic effect (Grade 1, 3.4%; Grade 2a, 31.0%; Grade 2b, 48.3%; Grade 3, 3.4%; Grade 4, 3.4%). Median disease-free survival was 15.5 months. Median overall survival in the whole cohort was 35.1 months. The only independent prognostic pre-NACIMRT factor identified was serum carbohydrate antigen 19-9 (CA19-9) > 400 U/ml before NACIMRT. CONCLUSIONS: NACIMRT showed preferable outcome without significant operative morbidity for BRPC-A patients. NACIMRT contributes to good local tumor control, but a high initial serum CA19-9 implies poor prognosis even after neoadjuvant treatment. TRIAL REGISTRATION: UMIN-CTR Clinical Trial: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000011776 Registration number: UMIN000010113. Date of first registration: 01/03/2013

    Lifetime attributable risk of radiation-induced secondary cancer from proton beam therapy compared with that of intensity-modulated X-ray therapy in randomly sampled pediatric cancer patients

    Get PDF
    To investigate the amount that radiation-induced secondary cancer would be reduced by using proton beam therapy (PBT) in place of intensity-modulated X-ray therapy (IMXT) in pediatric patients, we analyzed lifetime attributable risk (LAR) as an in silico surrogate marker of the secondary cancer after these treatments. From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: (i) brain, head and neck, (ii) thoracic, (iii) abdominal, and (iv) whole craniospinal (WCNS) irradiation. IMXT was replanned using the same computed tomography and region of interest. Using the dose–volume histograms (DVHs) of PBT and IMXT, the LARs of Schneider et al. were calculated for the same patient. All the published dose–response models were tested for the organs at risk. Calculation of the LARs of PBT and IMXT based on the DVHs was feasible for all patients. The means ± standard deviations of the cumulative LAR difference between PBT and IMXT for the four categories were (i) 1.02 ± 0.52% (n = 7, P = 0.0021), (ii) 23.3 ± 17.2% (n = 8, P = 0.0065), (iii) 16.6 ± 19.9% (n = 8, P = 0.0497) and (iv) 50.0 ± 21.1% (n = 3, P = 0.0274), respectively (one tailed t-test). The numbers needed to treat (NNT) were (i) 98.0, (ii) 4.3, (iii) 6.0 and (iv) 2.0 for WCNS, respectively. In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. Although a validation study is required, it is suggested that the LAR would be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques
    corecore