35 research outputs found

    Nondestructive quality evaluation and monitoring of Braeburn apples by Spatially Resolved Spectroscopy.

    Get PDF
    Contact Spatially Resolved Spectroscopy (SRS) measurements by means of a fiber-optics probe were employed for nondestructive assessment and monitoring of Braeburn apples during shelflife storage. SRS measurements and estimation of optical properties were calibrated and validated by means of liquid optical phantoms with known optical properties and a metamodeling method. The acquired optical properties (absorption and reduced scattering coefficients) for the apples during shelf-life storage were found to provide useful information for nondestructive evaluation of apple quality attributes (firmness and SSC) and for monitoring the changes in their microstructure and chemical composition. On-line SRS measurement was achieved by mounting the SRS probe over a conveyor syste

    Research on Using Fluorescence Fingerprints for the Evaluation of Food Quality

    No full text

    Development of Measurement for Bubble Structure of Bread using Image Scanner

    No full text

    Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging

    No full text
    Cooking of potatoes causes changes in the microstructure and composition of starch. These changes affect the interaction of light with the starch granules at different regions inside the potato. In this research, the potential of hyperspectral imaging in the wavelength range 400-1000nm in combination with chemometric tools and image processing for contactless detection of the cooking front in potatoes has been investigated. Partial least squares discriminant analysis (PLSDA) was employed to discriminate between the pixel spectra for the cooked regions and those for the remaining raw regions. In a next step image processing techniques were applied to detect the cooking front in the images obtained by the PLSDA pixel classification. From each of the resulting images with detected cooking fronts, the ratio of the remaining raw part area over the total potato area was then calculated. Finally, the effect of the cooking time on this ratio was modeled to be able to predict the optimal cooking time. The results illustrate the potential of hyperspectral imaging as a process monitoring tool for the potato processing industry.status: publishe
    corecore