124 research outputs found

    Probing of Transient Electric Field Distribution in ITO/PI/P3HT/Au By Time-Resolved Optical Second Harmonic Generation Measurement

    Get PDF
    AbstractBy using time-resolved optical second harmonic generation (TR-SHG) measurements, we studied carrier behaviors in poly(3-hexylthiophene) (P3HT) metal-insulator-semiconductor (MIS) diodes. TR-SHG measurements probed transients of electric fielddistribution in the P3HT active layer. Results showed that hole injection and removal processes were non-reversal, where the response times were different from each other and the relaxation time of the transient electric field strongly depended on the hole injection process

    Percutaneous transgastric pancreatic duct drainage for pancreaticojejunal leak after pancreaticoduodenectomy

    Get PDF
    Pancreaticojejunal anastomotic leakage is one of the severe complications after pancreaticoduodenectomy and is often difficult to manage. A 64-year-old man status post pancreaticoduodenectomy had the gastroduodenal artery stump bleeding caused by the pancreaticojejunal anastomotic leakage, successfully treated by placing a covered stent. To control the leakage, subsequent percutaneous transgastric pancreatic duct puncture was performed under fluoroscopic guidance, targeting a surgically placed pancreaticojejunal internal drainage catheter. A 5 F catheter with side holes was inserted into the main pancreatic duct, the tip of which was placed in the anastomosed jejunum. The leak was successfully treated using this catheter. Percutaneous transgastric pancreatic duct drainage might be a useful and feasible option to resolve the condition

    A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella

    Get PDF
    BackgroundXenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure.ResultsHere we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs.ConclusionsOur results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution

    Serotonin Improves High Fat Diet Induced Obesity in Mice

    Get PDF
    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle

    Extreme deformability of insect cell membranes is governed by phospholipid scrambling

    Get PDF
    昆虫の細胞は柔らかい! --細胞膜を柔らかくするタンパク質を発見--. 京都大学プレスリリース. 2021-06-09.Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells

    Cross-ancestry genome-wide analysis of atrial fibrillation unveils disease biology and enables cardioembolic risk prediction

    Get PDF
    心房細動の遺伝的基盤を解明 --大規模ゲノムデータによる病態解明と遺伝的リスクスコア構築--. 京都大学プレスリリース. 2023-01-20.Atrial fibrillation (AF) is a common cardiac arrhythmia resulting in increased risk of stroke. Despite highly heritable etiology, our understanding of the genetic architecture of AF remains incomplete. Here we performed a genome-wide association study in the Japanese population comprising 9, 826 cases among 150, 272 individuals and identified East Asian-specific rare variants associated with AF. A cross-ancestry meta-analysis of >1 million individuals, including 77, 690 cases, identified 35 new susceptibility loci. Transcriptome-wide association analysis identified IL6R as a putative causal gene, suggesting the involvement of immune responses. Integrative analysis with ChIP-seq data and functional assessment using human induced pluripotent stem cell-derived cardiomyocytes demonstrated ERRg as having a key role in the transcriptional regulation of AF-associated genes. A polygenic risk score derived from the cross-ancestry meta-analysis predicted increased risks of cardiovascular and stroke mortalities and segregated individuals with cardioembolic stroke in undiagnosed AF patients. Our results provide new biological and clinical insights into AF genetics and suggest their potential for clinical applications

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July

    Development of impurity seeding and radiation enhancement in the helical divertor of LHD

    Get PDF
    Impurity seeding to reduce the divertor heat load was conducted in the large helical device (LHD) using neon (Ne) and krypton (Kr) puffing. Radiation enhancement and reduction of the divertor heat load were observed. In the LHD, the ratio between the total radiated power and the heating power, f rad = Prad/Pheating, is limited up to around 30% in hydrogen plasmas even for high density plasma just below the radiative collapse (ne, bar  >  1   ×   1020 m−3), where ne, bar is the line averaged density. With Ne seeding, the ratio could be raised to 52% at ne, bar ~ 1.3   ×   1019 m−3, albeit with a slight reduction in confinement. f rad ~ 30% could be sustained for 3.4 s using multi-pulse Ne seeding at ne, bar ~ 4   ×   1019 m−3. The localized supplemental radiation was observed along the helical divertor X-points (HDXs) which is similar to the estimated structure by the EMC3-EIRENE code. Kr seeding was also conducted at ne, bar ~ 3.1   ×   1019 m−3. f rad ~ 25% was obtained without a significant change in stored energy. The radiation enhancement had a slower time constant. The supplemental radiation area of the Kr seeded plasma moved from the HDXs to the core plasma. Highly charged states of Kr ions are considered to be the dominant radiators from the plasma core region
    corecore