3,006 research outputs found

    Retrieval Properties of Hopfield and Correlated Attractors in an Associative Memory Model

    Full text link
    We examine a previouly introduced attractor neural network model that explains the persistent activities of neurons in the anterior ventral temporal cortex of the brain. In this model, the coexistence of several attractors including correlated attractors was reported in the cases of finite and infinite loading. In this paper, by means of a statistical mechanical method, we study the statics and dynamics of the model in both finite and extensive loading, mainly focusing on the retrieval properties of the Hopfield and correlated attractors. In the extensive loading case, we derive the evolution equations by the dynamical replica theory. We found several characteristic temporal behaviours, both in the finite and extensive loading cases. The theoretical results were confirmed by numerical simulations.Comment: 12 pages, 7 figure

    Successive phase transitions at finite temperatures of the supersolid in the three-dimensional extended Bose-Hubbard model

    Full text link
    We study the finite temperature properties of the extended Bose-Hubbard model on a cubic lattice. This model exhibits the so-called supersolid state. To start with, we investigate ordering processes by quantum Monte Carlo simulations, and find successive superfluid and solid phase transitions. There, we find that the two order parameters compete with each other. We obtain the finite temperature phase diagram, which contains the superfluid, the solid, the supersolid and the disordered phase. We develop a mean-field theory to analyze the ordering processes and compare the result with that obtained by simulations, and discuss the mechanism of the competition of these two orders. We also study how the supersolid region shrinks as the on-site repulsion becomes strong.Comment: 6 pages, 6 figure

    Quantum Decoherence at Finite Temperatures

    Get PDF
    We study measures of decoherence and thermalization of a quantum system SS in the presence of a quantum environment (bath) EE. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of SS. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of SS and of EE. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.Comment: 5 pages, 3 figure

    Feedback Effect on Landau-Zener-Stueckelberg Transitions in Magnetic Systems

    Get PDF
    We examine the effect of the dynamics of the internal magnetic field on the staircase magnetization curves observed in large-spin molecular magnets. We show that the size of the magnetization steps depends sensitively on the intermolecular interactions, even if these are very small compared to the intra-molecular couplings.Comment: 4 pages, 3 Postscript figures; paper reorganized, conclusions modifie

    Structure of Metastable States in Phase Transitions with High-Spin Low-Spin Degree of Freedom

    Full text link
    Difference of degeneracy of the low-spin (LS) and high-spin (HS) states causes interesting entropy effects on spin-crossover phase transitions and charge transfer phase transitions in materials composed of the spin-crossover atoms. Mechanisms of the spin-crossover (SC) phase transitions have been studied by using Wajnflasz model, where the degeneracy of the spin states (HS or LS) is taken into account and cooperative natures of the spin-crossover phase transitions have been well described. Recently, a charge transfer (CT) phase transition due to electron hopping between LS and HS sites has been studied by using a generalized Wajnflasz model. In the both systems of SC and CT, the systems have a high temperature structure (HT) and a low temperature structure (LT), and the change between them can be a smooth crossover or a discontinuous first order phase transition depending on the parameters of the systems. Although apparently the standard SC system and the CT system are very different, it is shown that both models are equivalent under a certain transformation of variables. In both systems, the structure of metastable state at low temperatures is a matter of interest. We study temperature dependence of fraction of HT systematically in a unified model, and find several structures of equilibrium and metastable states of the model as functions of system parameters. In particular, we find a reentrant type metastable branch of HT in a low temperature region, which would play an important role to study the photo-irradiated processes of related materials.Comment: 19 pages, 11 figure

    Ordered phase and phase transitions in the three-dimensional generalized six-state clock model

    Full text link
    We study the three-dimensional generalized six-state clock model at values of the energy parameters, at which the system is considered to have the same behavior as the stacked triangular antiferromagnetic Ising model and the three-state antiferromagnetic Potts model. First, we investigate ordered phases by using the Monte Carlo twist method (MCTM). We confirmed the existence of an incompletely ordered phase (IOP1) at intermediate temperature, besides the completely ordered phase (COP) at low-temperature. In this intermediate phase, two neighboring states of the six-state model mix, while one of them is selected in the low temperature phase. We examine the fluctuation the mixing rate of the two states in IOP1 and clarify that the mixing rate is very stable around 1:1. The high temperature phase transition is investigated by using non-equilibrium relaxation method (NERM). We estimate the critical exponents beta=0.34(1) and nu=0.66(4). These values are consistent with the 3D-XY universality class. The low temperature phase transition is found to be of first-order by using MCTM and the finite-size-scaling analysis

    Fluctuations and vortex pattern ordering in fully frustrated XY model with honeycomb lattice

    Full text link
    The accidental degeneracy of various ground states in a fully frustrated XY model with a honeycomb lattice is shown to survive even when the free energy of the harmonic fluctuations is taken into account. The reason for that consists in the existence of a hidden gauge symmetry between the Hamiltonians describing the harmonic fluctuations in all these ground states. A particular vortex pattern is selected only when anharmonic fluctuations are taken into account. However, the observation of vortex ordering requires relatively large system size L>>100000.Comment: 4 pages, 2 figures, RevTeX4, a different method is used to find which state is selected by anharmonic fluctuations, the last third of the text is completly rewritte

    Spin-Peierls transition of the first order in S=1 antiferromagnetic Heisenberg chains

    Full text link
    We investigate a one-dimensional S=1 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. Investigating the ground state energy of the static bond-alternating chain, we find that the instability to a dimerized chain depends on the value of the spin-phonon coupling, unlike the case of S=1/2. The spin state is the dimer state or the uniform Haldane state depending on whether the lattice distorts or not, respectively. At an intermediate value of the spin-phonon coupling, we find the first-order transition between the two states. We also find the coexistence of the two states.Comment: 7 pages, 12 eps figures embedded in the text; corrected typos, replaced figure

    Nonexponential Relaxation of Magnetization at the Resonant Tunneling Point under a Fluctuating Random Noise

    Full text link
    Nonexponential relaxation of magnetization at resonant tunneling points of nanoscale molecular magnets is interpreted to be an effect of fluctuating random field around the applied field. We demonstrate such relaxation in Langevin equation analysis and clarify how the initial relaxation (square-root time) changes to the exponential decay. The scaling properties of the relaxation are also discussed.Comment: 4 pages, 4 fgiure

    An update on accumulating exercise and postprandial lipaemia: translating theory into practice

    Get PDF
    Over the last two decades, significant research attention has been given to the acute effect of a single bout of exercise on postprandial lipaemia. A large body of evidence supports the notion that an acute bout of aerobic exercise can reduce postprandial triacylglycerol (TAG) concentrations. However, this effect is short-lived emphasising the important role of regular physical activity for lowering TAG concentrations through an active lifestyle. In 1995, the concept of accumulating physical activity was introduced in expert recommendations with the advice that activity can be performed in several short bouts throughout the day with a minimum duration of 10 minutes per activity bout. Although the concept of accumulation has been widely publicised, there is still limited scientific evidence to support it but several studies have investigated the effects of accumulated activity on health-related outcomes to support the recommendations in physical activity guidelines. One area, which is the focus of this review, is the effect of accumulating exercise on postprandial lipaemia. We propose that accumulating exercise will provide additional physical activity options for lowering postprandial TAG concentrations relevant to individuals with limited time or exercise capacity to engage in more structured forms of exercise, or longer bouts of physical activity. The benefits of accumulated physical activity might translate to a reduced risk of cardiovascular disease in the long-term. Copyright © 2013 The Korean Society for Preventive Medicine
    • …
    corecore